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Abstract

It is well known that the distribution of returns from various financial
instruments are leptokurtic, meaning that the distributions have ‘fatter
tails’ than a Normal distribution, and have skew toward zero. This paper
presents a graceful micro-level explanation for these effects, using agents
whose private valuations have Normally-distributed errors, but whose util-
ity function includes a term for the percentage of others who are also
buying a security.

1 Introduction

Many researchers have pointed out that day-to-day returns on equities have ‘fat
tails,’ in the sense that extreme events happen much more frequently than would
be predicted by a Normal distribution, and have skew toward zero, meaning
that extreme negative returns are more likely than extreme positive returns.
This has been re-verified by many of the sources listed below. The fat tails
of actual equity return distributions is far from academic trivia: if extreme
events are more likely than predicted by a Normal distribution, models based
on Normally-distributed returns can systematically under-predict risk.

Here, I present an explanation for the non-Normality of equity returns using
a micro-level model where agents observe and emulate the behavior of others.
There are several reasons for rational agents to take note of the actions of other
rational agents; the model here is agnostic as to which best describes real-world
agents, but given some motivation to emulate others, I show that the wider-
than-Normal distribution of equity returns easily follows.

∗This paper originated as work done at Caltech, under the guidance of Matt Jackson, Kim
Border, and Peter Bossaerts. The agent-based modeling work was done at the Brookings
Institution’s Center for Social and Economic Dynamics, and the author thanks the CSED’s
members for their support. Thanks also to Josh Tokle of the United States Census Bureau.
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From the tulip bubble of 1637 to the housing bubble of 2007, herding behav-
ior has been used to explain extreme market movements [Mackay, 1841, Schiller,
2008]. Most of the literature discussed below focuses on models where the herd
almost always leads itself to an extreme outcome, and goods are blockbusters or
flops. Typically, agents in these models have private information or preferences
that are easily drowned out by observing the behavior of others (and in some
cases they have no private information at all). Conversely, the model here shows
that when agents have an evaluation strategy that is a mix of both private pref-
erences and public actions or information, then outcome distributions look much
like that of day-to-day equity returns: they may have kurtosis and skew that are
arbitrarily large, but they remain unimodal. As the individual utility function
is adjusted so that private information is of little value, the model outcomes
replicate the blockbusters, flops, and market bifurcations in the literature.

Section 2 will give a quick overview of the mostly empirical literature that
has demonstrated that equity returns are fat-tailed, and that equity traders
(and those who advise equity traders) demonstrate emulative behavior. Epstein
and Axtell [1996, p 20, emphasis in original.] wrote “Perhaps one day people
will interpret the question ‘Can you explain it?’ as asking ‘Can you grow it?’”
Section 3 will demonstrate that once we take emulative behavior as given, it
is easy to grow fat-tailed outcomes. Section 4 concludes, pointing out that,
because situations where outcomes are fat-tailed but not entirely off the charts
are common, we may be able to use emulative preferences to explain more than
they have been used for in the past.

2 Literature

This section gives an overview of two threads of the economics literature that
do not quite meet. The first is an overview of the existing literature on the
distribution of equity returns; the second is a survey of the situations posited
in the literature where individuals gain utility from emulating others.

2.1 Fitting non-Normal distributions

The second central moment, also known as the variance, is defined as:

µ2 = σ2 =
∫ ∞
−∞

(x− µ)2f(x)dx,

where x ∈ R is a random variable, µ is the mean of x (
∫∞
−∞ xf(x)dx), and f(x)

is the probability distribution function (PDF) on x.
One could similarly define the third and fourth central moments:

µ3 =
∫ ∞
−∞

(x− µ)3f(x)dx, and

µ4 =
∫ ∞
−∞

(x− µ)4f(x)dx.
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Depending on the author, the skew is sometimes the third central momemnt,
S ≡ µ3, and sometimes S ≡ µ3/σ

3. The kurtosis may be κ ≡ µ4, κ ≡ µ4/σ
4, or

κ ≡ µ4/σ
4 − 3. In this paper, I will use

S ≡ µ3, and
κ ≡ µ4/σ

4.

I will refer to κ as normalized kurtosis to remind the reader that it is divided
by variance squared.

The more elaborate normalizations make it easy to compare these moments
to a Normal distribution, because for a Normal distribution with mean µ and
standard deviation σ, µ4/σ

4 = 3. One can use these facts to check empirical
distributions for deviations from the Normal.

Fama [1965] ran such a test on equity returns, and found that they were
leptokurtic, meaning that µ4 � 3σ4, and were skewed. However, he is not the
first to notice these features—Mandelbrot [1963, footnote 3] traces awareness
of the non-Normality of return distributions as far back as 1915. Many of the
papers cited in the following few paragraphs reproduce the results using their
own data sets.

A Normal distribution is symmetric and therefore has zero skew (whether
normalized or not), and this fact can also be used to check empirical distributions
for deviations from the Normal distribution. Bakshi et al. [2003] gathered data
on several index and equity returns, and (with few exceptions) found a skew
toward zero (i.e., negative skew, meaning that extreme downward events are
more likely than extreme upward events).

Most of the explanations for the deviation from the Normal have focused on
finding a closed-form PDF that better fits the data. Mandelbrot [1963] showed
that a stable Paretian (aka symmetric-stable) distribution fit better than the
Normal. Blattberg and Gonedes [1974] showed that a renormalized Student’s t
distribution fit better than a symmetric-stable distribution. Kon [1984] found
that a mixture of Normal distributions fit better than a Student’s t. The mixture
model produces an output distribution by summing a first Normal distribution,
N (µ1, σ1), with a separate second Normal distribution, N (µ2, σ2). Depending
on the values of the five input parameters (two means, two standard deviations,
and a mixing parameter), the distribution produced by summing the two can
take on a wide range of mean, standard deviation, skew, and kurtosis.

The mixture model raises a few critiques. Kon found that the sum of two
distributions satisfactorily matches only about half of the equity return distri-
butions he tests. Others require as many as four input distributions—and thus
eleven input parameters—to explain the four moments of the distribution to be
matched. Barbieria et al. [2010, pp 1095–96] tested a set of four broad equity
indices (MSCI’s USA, Europe, UK, and Japan indices) against a comparable
model claiming Normality with variances changing over time, and rejected the
model for all four indices.
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As with all of the distribution models, the use of a sum of several distri-
butions raises the question of how the given distributions go beyond being a
good fit to being a valid explanation of market behavior. After all, one could
fit a Fourier transform to any data series to arbitrary precision, but it is not
necessarily an explanation of market behavior. This brings us to the second
thread of the literature, covering the micro-level behavior of market actors.

2.2 Emulation

The literature provides many rational motivations for emulating others, vari-
ously termed herding, information cascades, network effects, peer effects, spill-
overs—not to mention simple questions of fashion. This section provides a
sample of some of the theoretical results for such models, and a discussion of
herding in the finance context. None of these models were written with the
stated intention of describing an observed leptokurtic distribution, but this sec-
tion will calculate the kurtosis of the output distributions implied by some of
these models to see how they fare.

The restaurant problem Among the most common of the models where
agents emulate others are the herding or information cascade models, e.g. Baner-
jee [1992] or Bikhchandani et al. [1992]. In these models, agents use the prior
choices of other agents as information when making decisions.

A sequence of agents chooses to eat at restaurant A or B. The first will use
its private information to choose. The second will use its private information,
plus the information revealed by the observable choice made by the first agent.
The third agent will add to its private information the information provided by
observing where the first two entrants are eating. Thus, if the first two agents
are eating at restaurant A, the third may ignore a preference for restuarant B
and eat at A. Once the preponderance of prior choices leans toward restaurant
A, we can expect that all future arrivals will choose it as well. The next day,
both restaurants start off empty again, and early arrivals in the sequence might
have private information that restaurant B is better, so subsequent arrivals
would all go to restaurant B.

Network externalities are a property of goods where consumption by others
increases the utility of the good, such as a social networking web site whose
utility depends on how many others are also subscribed, computer equipment
that needs to interoperate with others’ equipment, or coordination problems like
the choice of whether to drive on the right or left side of the road. The typical
analysis (e.g., that of Choi [1997]) matches that of the restaurant problem.

Both the information and the direct utility stories can easily be shown to
produce a bifurcated distribution of results with probability one: over many
days, restaurant A will show either about 0% attendance or about 100% atten-
dance every day. Many goods show such a blockbuster/flop dichotomy, such as
movies [de Vaney and Walls, 1996].

But for our purposes, a sharply bimodal distribution is not desirable. First,
one would be hard-pressed to find an equity whose returns are truly bimodal.
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More importantly, such a bifurcated outcome distribution is typically platykur-
tic, the opposite of the leptokurtosis we seek. Consider an ideal bimodal dis-
tribution with density r ∈ (0, 1) at a and density 1 − r at b (for any values of
a, b ∈ R, a 6= b). The distribution has normalized kurtosis equal to

1
r − r2

− 3.

For a symmetric distribution, r = 0.5, the normalized kurtosis is one, and it
remains less than three for any r ∈ (.211, .789). Thus, a model that predicts a
bifurcated distribution can only show a large fourth moment if the distribution is
lopsided, which is not sustainable for equity returns—such a distribution would
quickly send prices to zero or infinity.

Distribution models Brock and Durlauf [2001] specify a model similar to the
one presented here. In the first round, a prior percentage of actors is given, and
people act iff that percentage would be large enough to give them a positive
utility from acting. In subsequent rounds, individuals use the percentage of
people who chose to act in the prior round to decide whether to act or not.

The specific details of Brock and Durlauf’s assumptions lead to two possible
outcomes. One is a bifurcation, much like the outcomes for the restaurant prob-
lem models above. The other, due to the specific form of the assumptions, is
that the output distribution is the input distribution transformed via the hyper-
bolic tangent. Unfortunately, the tanh transformation reduces the normalized
kurtosis, and is therefore inappropriate for deriving leptokurtic equity returns.

Glaeser et al. [1996] point out that the more people emulate others, the more
likely are extreme outcomes, which they measure via “excess variance.” They
do this via a Binomial model: if being the victim of a crime is a draw from a
Bernoulli trial with probability p, then the mean of n such trials is np, and the
variance is np(1 − p). Thus, given n and the sample mean (or equivalently, n
and p) we can solve for the expected variance, and if the observed variance is
significantly greater, then we can reject the hypothesis of independent Bernoulli
trials. Unfortunately, this process says nothing about whether the observed
victimization rates are Normally distributed or not: excess variance is not excess
kurtosis or skew.

Finance Within the theoretical finance literature, papers abound regarding
herding behavior (e.g., Grossman [1976, 1981], Radner [1979], Choi [1997], Mine-
hart and Scotchmer [1999]), although they concern themselves not with explain-
ing herding, but with the information aggregation issues entailed by herding.
Many of the stories regarding the emulation of others easily apply to the situa-
tion of the rational, self-interested manager of an asset portfolio:

• Pricing is partly based on the value of the underlying asset and partly on
what others are willing to pay for the asset. At the extreme, people will
buy a stock which pays zero dividends only if they are confident that there
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are other people who will also buy the stock; as more people are willing
to buy, the value of the stock to any individual rises.

• It has long been a lament of the fund manager that if the herd does badly
but he breaks even, he sees little benefit; but if the herd does well and
he breaks even, then he gets fired. Therefore, behaving like others may
explicitly appear in a risk-averse fund manager’s utility function.

• Since an undercapitalized company is likely to fail, the success of a public
offering may depend on how well-subscribed it is, providing another jus-
tification for putting the behavior of others in the fund manager’s utility
function.

• If a large number of banks take simultaneous large losses, then they may
be bailed out; since a bail-out is unlikely if only one bank takes a loss, this
may also serve as an incentive for financiers to take risks together.

• Simply following the herd: “[. . . ] elements such as fashion and sense of
honour affected the banks’ decision to take part in a syndicated loan.
Banks are certainly not insensitive to prevailing trends, and if it is ‘the in
thing’ to take part in syndicated loans[. . . ], people sometimes consent too
readily.” [Jepma et al., 1996, p 337]

The model of this paper is a reduced form model which simply assumes that
a financier’s expected utility from an action is increasing with the percentage of
other people acting. I make no effort to explain which of the above motivations
are present at any time, but assert that given these effects, the model below is
applicable.

Empirical studies of analyst recommendations find that they do indeed
herd. For example, Graham [1999] finds evidence of herding among investment
newsletter recommendations, and finds that the more reputable ones are more
likely to herd. Meanwhile, Hong et al. [2000] finds evidence of herding among
investment analysts, and finds that inexperienced analysts are “more likely to
be terminated for bold forecasts that deviate from consensus,” and therefore
less reputable analysts are more likely to herd. Welch [2000] finds that an an-
alyst recommendation has a strong impact on the next two recommendations
for the same security by other analysts, and that this effect is uncorrelated with
whether the recommendations prove to be correct or not. Although these pa-
pers disagree in the details, they all find empirical evidence that analysts are
inclined to behave like other analysts (and therefore the people who listen to
analysts are likely to also behave alike), so the model below is apropos.

3 The model

One run of the model here finds an output equilibrium demand given an input
distribution of individual preferences. Repeating a single run a few thousand
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times gives a distribution of equilibrium demands, which will have large kurtosis
and skew under certain conditions.

One run of the model consists of a plurality of agents (the simulations below
use 10,000), each privately deciding whether to purchase a good. Each has an
individual taste for consuming, t ∈ R, where t ∼ N (ε, 1); ε is a small non-
negative offset, fixed at zero or 0.05 in the simulations to follow.

Let the proportion of the population consuming be k ∈ [0, 1], and let the
desire to emulate others be represented by a coefficient α ∈ [0,∞). Then the
utility from consuming is

Uc = t+ αk. (1)

The utility from not consuming is

Unc = α(1− k). (2)

That is, agents who do not consume get utility from emulating the 1− k agents
who also do not consume, but have a taste for non-consumption normalized to
zero. One can show that this normalization is without loss of generality. Agents
consume iff Uc > Unc.

A Bayesian Nash equilibrium is a set of acting agents, comprising the pro-
portion ka percent of the population, where all acting agents have Uc > Unc

given ka percent acting, and all agents outside the acting set have Uc ≤ Unc

given ka percent acting.
It can be shown that, given the assumptions here, the game has a cutoff-type

equilibrium, where there is a cutoff value T such that every agent with private
tastes greater than T acts and every agent with t ≤ T does not act. An agent
with private taste t equal to the cutoff T will have Uc = Unc.

The key output variable from the model below is the percent acting. The
next step would be to use that percent acting to set the demand curve in a
textbook pair of supply/demand curves. The supply curve would remain fixed,
while the demand curve would translate along the axis of units demanded as
the percent buying the good rises or falls. This would produce prices that rise
and fall with demand, as expected. With linear supply/demand, the transla-
tion induces a rescaling from percent acting to prices. Thus, from a series of
leptokurtic demands, a series of leptokurtic prices can easily follow. To keep
the model simple, the remainder of the paper will focus on generating leptokur-
tic demand, without explicitly discussing the subsequent transformation from
demand to prices.

3.1 Implementation

The statistic we seek is rather complex: it is the kurtosis of the sample equilib-
rium values of k given the initial distribution of agent preferences.

Recall the restaurant problem, where we measured the turnout to restaurant
A every day for a few weeks or months. Each day gave us another draw of
diners from the population, and it was the aggregate of turnouts over several
days that added up to the bimodal distribution. Similarly, the literature on
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equities did not claim that if we surveyed willingness to pay by all members
of the market at some instant in time, the distribution would be leptokurtic;
rather, the claim is that every day there is a new distribution of willingness to
pay, which produces a single closing price for the day, and tallying those closing
prices over time generates a leptokurtic distribution. In this model, we draw
a sample distribution (which one could think of as today’s market, and which
will be close to a Normal distribution), find the equilibrium value k̂, and then
repeat until we have enough samples of k̂ that we can estimate the moments of
k̂’s distribution.

We must first solve for the equilibrium percent acting for a single run. Briefly
switching from the equilibrium percent acting k to the equilibrium cutoff taste
T , one can find the equilibrium for a single distribution by finding the value of
T such that an agent with that value is indifferent between action and inaction,
given that the cutoff is at that value (that is, Uc in Equation 1 equals Unc in
Equation 2). Write the proportion not acting given cutoff T as CDF(T ) (i.e.
the cumulative distribution function of the empirical distribution of tastes up
to the cutoff T ); then any value of T that satisfies

T = α(1− 2CDF(T )) (3)

is an equilibrium.
One must exercise care in solving for the values of T from a given distribu-

tion. There are typically no closed-form solutions, so the work will require a
numeric search.

I use an agent-based simulation to organize the draws. For each step, the
simulation draws 10,000 agents from the fixed distribution, then the simulation
algorithm solves for equilibrium via tatônnement, as detailed below. The equi-
librium reached via market simulation is a Nash equilibrium as in Equation 3.
There are other search strategies for finding the equilibrium given the draws of t,
but the agent-based model has the advantages of always finding the equilibrium
and providing more than a system of equations, but a realistic story of what
happens in the market.

Repeating the process for thousands of draws from the fixed distribution, and
starting each simulation with a randomly chosen starting point, will produce a
distribution of the statistics T̂ and k̂, including multiple modes when there are
multiple equilibria.

The algorithm for a single run of the simulation is displayed in Figure 1. In
each step, agents consume or do not based on the value of k from the last step,
and the process repeats until the value of k no longer changes. The output of
the process is the equilibrium value of T̂ and the equilibrium percent acting k̂.

The code itself is a short script written in C using the open source Apophenia
library [Klemens, 2008], and is available upon request.
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–Fix n and ε.
–Generate a new population of agents:

–Each has a taste t, drawn from a N (ε, 1) distribution.
–draw the initial percent acting, k0 from a Uniform[0, 1] distribution.

–While k this period is not equal to k last period:
–For each agent:

–Consume iff Uk ≥ Unk.
–Recalculate k.

–Record the equilibrium percent acting k.

Figure 1: The algorithm for finding the equilibrium level of consumption for
one run.

3.2 Results

It is instructive to begin with the symmetric case, where ε = 0, so agents’ private
tastes are drawn from a N (0, 1) distribution.

Figure 2 shows a sequence of distributions of the equilibrium percent acting
k, from the distribution given α = 1 up to the distribution for α = 2.5, with
distributions for three specific values of α highlighted. Small values of α (where
utility is mostly private valuation) result in a Normal output distribution of
prices, while large values of α (where utility is mostly public) give a coordination-
game style bifurcation.

As α goes from the Normal range to the bifurcated range, there is a small
range of α where the transition occurs, and the distribution is neither fully
bifurcated nor Normal.

At large α, the value of k between the sink that sends the simulation to the
lower equilibrium and the sink that sends the simulation to the higher equilib-
rium (near 0.5) is an unstable equilibrium; in theory it occurs with probability
zero, but in a finite simulation it occurs with small probability.1 Below, we will
see that these distributions with a small middle mode behave like a bifurcated
distribution, so I will refer to this distribution as bifurcated.

The small transition range is especially clear when we look at the normalized
kurtosis of each α’s distribution, which is not at all a uniform shift. As in Figure
3, the normalized kurtosis is consistently three for small values of α (as for a
Normal distribution), is consistently one for large values of α (as for a symmetric
bimodal distribution), and has a quick period of transition between α ≈ 1 and
α ≈ 1.4.2

1The figures are the aggregate of 20,000 runs of the simulation. If an equilibrium was
reached even once, then it appears as a mark in the 3-D plot. The 2-D plots have lower
resolution, and unlikely events may blend with the axes.

2Please note that the units on α are utils per percent acting, so exact values of α are
basically meaningless. Rescaling t (by changing its variance) would produce entirely different
values of α, but the qualitative effects described here would still hold.
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Figure 2: Above, three distributions of the equilibrium percent acting k, for
20,000 runs with α equal to 1, 1.3, and 1.6. Below, a full sequence of such
distributions, for α = 0.5 in front up to α = 2 at the back. Vertical axis is the
number of runs (out of 20,000 per α) whose equilibrium is in the given histogram
bin. The three slices in the 2-D plot are indicated by a line on the floor of the
3-D plot.
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Figure 3: The normalized kurtosis reveals the narrow range of transition from
Normal-type distribution (κ/σ4 = 3) to bimodal-type distribution (κ/σ4 = 1).

Figure 4 shows the sequence of distributions where ε = 0.05. For α ≈ 0,
the distribution is roughly equivalent to the ε = 0 situation but shifted upward
slightly; for α ≈ 2 and above, where the outcome distribution is bifurcated,
the slight shift in the distribution’s center causes positive outcomes to be more
likely than negative outcomes.

However, between these two outcomes lies a range of α where the ε = 0
case would have led to a bifurcation, but the lower tail of the distribution is
suppressed because the nobody-acts equilibrium is not feasible. In this range,
we have an asymmetric but unimodal distribution.

Figure 5 plots normalized kurtosis for each α’s distribution. The neighbor-
hood of α ≈ 1.3 is again salient, because the normalized kurtosis in that range
is an order of magnitude larger than three. The model’s exceptional success in
generating a leptokurtic outcome makes the plot’s vertical scale rather large, so
it may be difficult to discern that the kurtosis up to the peak is three, and after
the peak is one, as in the ε = 0 case.

The bottom plot of Figure 5 shows that normalized skew follows the same
story relative to α as did kurtosis: it spikes around 1.3, where the distribution
of equilibrium percent acting has heavily negative skew.

Thus, for a realistic value of ε (i.e., anything but zero), and for a value of α
that is not too small to be equivalent to the private preferences case, and not
too large to be equivalent to the full herding case, we find exactly the type of
distribution we seek: unimodal, leptokurtic, with a negative skew.
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of PDFs for a range of values of α from α = 0.5 at front to α = 2 at rear.
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4 Conclusion

There are several explanations for why rational agents would choose to emulate
others, all of which advise that a utility function meant to describe a trader in
the finance markets should include a term for the desire to emulate others.

Meanwhile, we know that equity return distributions show certain consis-
tent deviations from the Normal distribution implied by näıve application of
a Central Limit Theorem. Adding a term for the emulation of others to indi-
vidual utilities produces aggregate outcome distributions that show these same
deviations from Normal: extreme outcomes happen more often, and do so asym-
metrically.

However, the story is not quite as simple as saying that people like to im-
itate others. The type of distribution observed in equity returns appears in a
middle-ground between two extreme types of utility function. With α small, the
distribution of cutoffs is more-or-less that of a situation of purely private utility.
With α large, the distribution follows the story of agents that simply follow the
herd. But between these two situations, there is a transition range where the
distribution of cutoffs has the desired characteristics of being unimodal, having
large kurtosis, and skew toward zero. Thus, the model explains this type of
distribution via an interplay between private and emulative utility.

This paper has shown that peer effects can generate leptokurtic outcomes
under certain conditions. This creates the possibility that an observed leptokur-
tic distribution can be explained by peer effects. For example, Jones et al. [2003]
found leptokurtic outcomes in Congressional actions such as budget allocations;
I suggest in this paper that a model of Congressional representatives who em-
ulate each other can generate such an outcome distribution. When outcomes
have a blockbuster/flop bimodality, there is little doubt that peer effects are at
play, but the model here shows that even more subtle outcomes, where outcomes
have unimodal distributions but fat tails, may also be the result of agents who
gain direct or indirect utility from emulating each other.
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