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Abstract

This paper discusses the design of a framework for sciemtifiaputing in-
tended to accommodate a wide range of models, from ordireast Isquares to
agent-based microsimulations, thus allowing easier coisgra and discussion
across different schools of modeling. The paper begins thigoretical issues
in defining a model, and concludes with running code appl\ome common

operations to disparate models.
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Introduction

Members of different schools of modeling literally speaffatent languages: authors
of agent-based models (ABMs) will typically write in a gealgprogramming language
like Java using one of many ABM-specific libraries, whilealete-event simulation au-
thors will use other libraries (such as SimPy); generalizeghr model (GLM) users
may use R’'s GLM-specific syntax for models; Bayesians mayeprBugs; demo-

graphic analysts often work in SAS or SPSS; and so on.

*The author would like to thank Amber Baum, Derrick HigginsuyGKlemens, Lynne Plettenberg,
Rolando Rodriguez, and Aref Dajani for comments and suppbhis report is released to inform inter-
ested parties of ongoing research and to encourage disousgie views expressed are those of the author
and not necessarily those of the U.S. Census Bureau.
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This paper discusses some of the challenges, both thesdratid practical, to pro-
viding a single computational object that can be used focrileing the full range of
models from traditional statistical modeling to simulatimodeling. Such a framework
would facilitate comparing models across paradigms, myipiaradigms, or using tools
written by advocates of one paradigm to study models fromhamo For example, a
researcher may wish to use a Probit regression to elucidatenttrosimulation re-
sults, while another may find that a Loess smoothing step-fargan technique from
generalized linear modeling—improves his simulation itssu

The simplest scenario is comparison across genres: howedesolts of a demo-
graphic analysis match up with the results from a GLM estiom& Researchers are
more likely to ask such questions when they do not need todspere forcing the
formats of inputs and outputs from the models to agree.

A hierarchical model consists of a collection of smallerépdndent models and
a parent model that aggregates statistics from each snmatidel; there is no need
for parent and child to be from the same modeling paradigmns@er a model of
smoking in a school: the child models could be several ndtwardels of individual
classrooms, and the parent a school-wide fit of the besigdittiormal distribution for
the count of smokers in each classroom. Given consisterdrs@a across models, one
could swap out the child network model for an OLS regressiomeplace the parent
distribution with a kernel density estimate. One could duilsir paradigm merging
with Bayesian updating, where two input models (perhaps fdifferent genres) are
combined to produce an output model.

Within a single paradigm, a structured model object alsobwasefits. The most
notable is the provision of defaults for structure elemeaotsexplicitly defined. Begin
by writing a probability function and nothing more. Giveretprobability function,
estimate parameters via maximum likelihood; then, giverapeter estimates, esti-
mate their variance via bootstrapping; then, given vagantest hypotheses about the
parameters. As time allows, replace computationallyrisitee default routines with
model-specific methods for the estimation of parameteralcutation of variances.

This paper begins at the broad level of theory, and proceedwteasing levels
of technical detail. After a brief discussion of some priterature, it will ask how

one could best use mathematical definitions of statisticadlets for computational
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purposes. Given a definition in theory, the discussion ttas®me of the many details
and issues that arise when the model object is implementedda. The paper will
then present applications of the model structure, inclydlis use in procedures like
Bayesian updating or in producing new models. Finally, hseghis paper strives to
address real-world issues of implementation, an appendsgnts a working example
of the principles laid out in the previous sections, comparinodels from different

genres.

Prior literature

Few statistics packages and libraries have attempted tp statistical models under a
single framework; this section will contrast two that do:ligg¢lmai et al., 2008] and
Lisp-Stat [Tierney, 1990]. Zelig embodies a specific typavofkflow by imposing a
specific interface on the model, while at the other end of ffleesum, Lisp-Stat goes
out of its way to allow any model by imposing as little frameaWwas possible.

Object-oriented systems like C++ or Java require a classhfacb declaration,
which defines the form to which all objects in the class musifaon. Zelig follows
this lead, defining a class format into which it places a lateof contributed models.
The class structure is intended for models that explainglesioputcome variable using
a set of input variables—basically, the traditional GLMfrawvork—and therefore lim-
its itself to functions useful for that style of analysis;liding key routines to estimate
model parameters, fix explanatory variables, presenttittesoutputs, and so on. The
specific model template does much to simplify work in thisegiworkflow, but has
little utility for problems that stray from that form.

Lisp-Stat follows the mold of object-oriented systems blase an inheritance
structure, where specific models inherit from a relativdédgteact model. Specific types
of GLM, for example, would inherit from a GLM prototype (wtidierney [1991] im-
plements). A model may respond to any from a long list of mgasaincluding simple
requests like: coef-estimates to get the estimated coefficients, on up to relatively
specialized and computation-intensive commands:lk@ks-distance.

Tierney explicitly rejects class formats as too restriefip 206]. Instead, a model

is simply a Lisp-style list of data or procedures, and awthoay add as many new
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items to the list as are useful, without class-defined cairgs. Thus, the system’s
key strength is that it is flexible, and new methods may e&sladded to any model.
[Methodis object-oriented jargon for a procedure that is held iasflan object or

structure.]

For our purposes, the system’s key failing is that it is fl&xiBnd new methods may
easily be added to any model. Each class of model will havewts set of functions
that make sense for its genre of modeling, so there is no gtes¢hat the internals of
any two models will match sufficiently well that one could lweapped for another in
a given procedure.

The problem, then, is to define a class structure that is beoadgh to usefully
describe any model, but sufficiently limited that we can bargateed that every model

implements every method included in the definition.

Defining the model object

McCullagh [2002] gives a long list of authors who either égitly or implicitly use
a definition of parameterized statistical model akin to théoWing, given a sample

spaceS and the space of all probability distributio®s

Definition 1 A parameterized statistical model is a parameter @¢bgether with a
functionP : 8 — P(S), which assigns to each parameter potht © a probability
distribution Py on S.

See also Hill [1990, p 119], who gives another definition gldcCullagh’s mold.

For example, a Normal modelin this contextis a function ne#variablesP (s, u, o),
wheres is a scalar data point, the mean, and the standard deviation. Selecting a sin-
gle element in the parameter space, suctuas 0, o = 1), fixes a single probability
distribution, a function of one variabl®(s).

Roughly, the definition describes a model using three clensica data set € S,
parameter# from the parameter spa€® and probabilities(-). It defines the model
as the mapping@ — P(-). However, there are reasons to map other elements of the
definition to other elements—say, data to parameters. Wahim mind, this definition

of a model adds useful generality to the prior definition:
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Definition 2 A model intermediates between data, parameters, andHibedls.

Presuming that we want to begin with input of fixed data or figacameters, the term
intermediateaunfolds to a number of different mappings: — 6, (6,s) — P, or
0 — s. These three directions are are depicted in Figure 1.

In code, the likelihood function has a signature of the fdrfirelihood (data,
parameters), returning a scalar real number. Following the mapping ifirion 1,
fixing parameters to a constant value reduces this function to a probabiliyritiu-
tion P(S).

However, there is more to be done. Given data, one could genadistribution of
parameters: fix and thus reduc®(S, ©) to P(©). Some authors, most notably Fisher
[1934, p 287], are adamant that this ikelihood functionwhile P(S) is aprobability
function and the two should remain separate in interpretation. dhepaiter is entirely
indifferent to the distinction, and any differences in npieetation are up to the user.

The estimation problem goes from input data to parameters,f. A maximum
likelihood estimation (MLE) would execute the mapping— P(0©), then find the
most likely value off. But there are often other methods available. For the Normal
model, a full maximume-likelihood search would be silly: tim@st likely i is the data
mean, and the most likely the square root of the sample variance.

Given parameters, one can generate new dhta:(s). By the traditional model,
random data generation involves fixing the parameters,rireing a large volume of
draws from the distributio®®(S). Computationally, this method is typically the worst
case. Rather, there is a thick book of tricks to make efficiantiom draws without
explicitly evaluating likelihoods (i.e. Devroye [1986]Jhe expected value is another
salient point in the spacé that could be derived fromd via P(-); again, one can
find it via millions of draws fromP(S) or, for many models, a simple closed-form
computation.

Definition 2 expands Definition 1 by including all mappingsang data, parame-
ters, and likelihoods in the model definition, thus makingmdor specification in code
of the simple estimation routine for the Normal model or theenmntricks for drawing
random numbers. Perhaps more importantly, the definitidicéttes what is not in the
model: Bayesian updating and Cook’s distance, for exanyilebe implemented as

functions outside the model object that will take modelspsiis.
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Simulations versus distributions

The discussion above took the core of the model as a protyadifitribution, but
simulation-type models, centered around explicitly dibseg the interaction among
several elements of a system, often do not center aroundbalpitity density. Nonethe-
less, under appropriate assumptions, a probability Higion does materialize.

For a function to be a probability distribution, it must méwb criteria: it is a
function over a given space that integrates to one, and @yalwonnegative.

Even the requirement that the function integrate to one imroessary for most
purposes: maximum likelihood routines make no use of theirement, and strategies
to make random draws from an arbitrary function typicallg osly relative values of
the function from which draws are made. Of the methods desdiin the application
section below, only Kullback-Leibler divergence and, im&cases, Bayesian updating
use this requirement.

Consider a simulation intended to approximate observea. dahe distance be-
tween the simulated output and the observed value(s) caadilg be calculated using
an appropriate metric, and, given distare can be defined as a monotonically de-
creasing function of distance, such B41 + d) or e~?. This short paper is not an
appropriate venue for discussing the choice of transfaonabut note that the Infor-
mation Equality indicates that the choice of transformat®frequently not relevant;
see, e.g., Pawitan [2001].

Without target data, models with a stochastic componentigge probability dis-
tributions over output values directly. Let input data beeaterX, and outputs a scalar
Y’; then each run is a draw from the distributi®Y’|X) implicit to the assumptions
and stochastic elements of the simulation. A random numbéeemtion scheme im-
plies a probability distribution (and vice versa), so weiadave enough for full use
of the framework below.

The methods in the section on applications, below, includeraber of common
statistical methods that | feel are underused outside otrtgition of closed-form
statistics. The next section will show that, once an autlasniritten down an inverse-
distance function to evaluate a set of model parametersieteof a full statistical

model can quickly be filled in, and the statistical method=dugirectly.
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Implementation

To this point, the computational model object would inclydéor probability),
randomdraw, estimate, andexpected_value (or, as discussed belowredict)
methods. These functions would be declared as part of thehetaks specification,
and thus would have the same signature for all models. Theday updating routine
below will make use of aame element, which is naturally also useful for any output
routines.

A model intermediates between data, parameters, andhialis, so the model
object will naturally require a link to the origindhta set used for estimation and a
list of parameters.

As a side-note, the authors of the R package, Gentleman akd Ja000], advocate
lexical scoping to bind the values of the general form, likenfy NV (x, i1, o) with
a given specific set of parameters (like= 0, o = 1) to produceP(x). When a
function is declared, it is stored in a larger list that ird#s both the function and the
environment in which the function was declared. Whatevéresy: ando had when
this list was initialized are stored in the environment, asdd as the function’s fixed
values. Thus, R generatesahhocstructure using the environmentto store parameters
and data for a single method. An explicitly-defined modekcobgran simply hold the

parameter values directly.

Default methods

If two models are similar, then the author of the second shbel able to use the
methods from the first, rather than rewriting them. Inhadg&from a parent model is
easy: just copy the parent model and thus all of its methbds, teplace any individual
methods that differ.

This is useful when two models are similar, but should thé@ubhave no model
to work off of, the system should also provide default methddne could implement
default methods via a model at the base of a formal inhertaree; in the appendix,
they will be implemented via a set of wrapper functions.

In the simple C-like pseudocode to follow, thesymbol indicates assignment, and

model . p refers to the element held inside theodel structure.
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Definition 1 focused on a probability function, so say thatathor writes only the

probability function for a new model:

new_model.p = carefully_written_probability_fn(., .)
new_model.log_likelihood = <undefined>

new_model.predict = <undefined>

The author provided nothing more, but every other methodbeaderived via a
computationally-intensive method. To give the simplestregle, alog_likelihood

function would take in a data set and a model, and return thétref a simple if-then:

if model.log_likelihood exists
return model.log_likelihood(data, model)
else

return log(model.p(data, model))

That is, if there is a log likelihood function to be had, thesedit; if not, then find
the log likelihood via the log gp. In practice, one or the other is typically more precise
and easier to calculate—statisticians lean toward logjtiked, while simulations tend
to arrive at a simple.

Other methods will also use the specific model’s functiorvdikble, and a fill-in
default otherwise. For example, an ordinary least squa&s) model would have
anestimate method solving the linear algebra equation for OLS pararagtehile
elaborate models with only@function would resort to the default of MLE.

Models with no explicit random number generator (RNG) cawdd Adaptive Re-
jection Markov Sampling [Gilks et al., 1995]. The score.(ithke gradient of the log
likelihood function) can be calculated using a delta meth@dnversely, a model that
provides only an RNG can produce a probability distribudither by binning several
draws into a probability mass function (a PMF, see below)@ossibly smoothing the
PMF via kernel smoothing, Loess, or other methods.

Now consider missing data, prediction, and expected valBegin with a tuple
of data of the formY X], and say thal” is missing, leavindNaN X] (whereNaN
is read asNot a number. This is a common setup for maximum likelihood (ML)
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imputation: given the model and existing data, find the mi&styl fill-in for the NaN
value. This is also the prediction story for GLMs: the fullt@aet[Y X] is known
when estimating parameters, lBatis missing and to be filled in when predicting. For
a distribution, given dat@ifaN X, the best fill-in is typically the conditional expected
value,E (Y| X). The unconditional expected value is the special case witedata is
available, and all values must be filled in. Thus, a sipgledict function with an ML
imputation default can act as a missing data, predictiotheapected value routine. As
with log likelihood and maximum likelihood, ML imputatioequires only @ method

to find a computationally-intensive solution, but specificdals can add special cases
when closed-form solutions exist.

At this point, every model has a small set of functions that thee same form in
every model. As long as the model author wrote some methodsdanodel (probably
the log likelihood function), then all of the other methods guaranteed to work and
return good values via the default dispatch functionspaign the results may be more

computationally intensive than necessary.

Applications

This section shows some uses of the model object, includingfions that take models
as inputs, and transformations of models to produce new moslech as fixing most
of the parameters of a multidimensional model to produceidimensional model.
Some applications are immediate. Producing covarian@$®aotstrapping and
jackknifing involves generating a series of subsets of a rdata set, re-running the
estimate method of a model on each subset, and finding the overalln@giasing
the list of subset parameters. Tierney's example of Cooistadce also asks only
anestimate method of a model. In all of these cases, the procedure usg®oa
element of the model interface, so the procedure can be &idaribat calls a model as

input rather than being a method internal to the model itself
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Data sets as models

Consider drawing from an urn filled with black, white, and badls, where 150 black
balls, 50 white, and 50 red balls were pulled. This set of pla®ns can be read as
a data set of 250 elements, or as a probability model, whexsidg from the urn is
a Bernoulli draw with observed odds of black equal to 60%, @tds of white and of
red equal to 20% each.

That s, the data can be read as a probability mass functii)Raka a histogram.
With a continuous range of options and— oo, the histogram becomes a common
probability distribution function (PDF).

Only a few methods need be set to generate the model. Fivstilsa original data
set, one possibly weighted observation per row. Then writér@w_data, model)
function to check the frequency atw_data within the saved data set, writedaaw
function that draws a random row from the data set, and leaeything else to default
methods.

For an application, Kullback-Leibler divergence is usethenasure a pseudo-distance

between distributions. Given two modeidsandt, the total divergence is

/ In (t(z)/a(x)) t(z)dx.
Va

That is, it is the expected value bi(¢(x)/a(z)) given thatz is distributed as the
probability distribution associated with model
Given two models where one hagzaw method and both havig_likelihoods,
one can calculate this integral as follows, wheris the number of draws (typically
thousands or millions):
val = 0
repeat n times:
X = t.draw //i.e. draw from the t model
val = val + t.log_likelihood(x) - a.log_likelihood(x)
return val/n
Because any given value afis drawn in proportion tot.p(x), this gives the
correctly-weighted expected value.

Given a theoretical model, and an observed data set converted into a PMF, one
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could find the divergence of the data from the theoreticdtitigtion. Similar things
can be done for other data-versus-model routines, suchiasgqGhare or Kolmogorov-

Smirnov tests of data’s divergence from a hypothesized inode

Bayesian updating

Bayesian updating is a process that takes in two model abgad produces a new
model object as output.

There are some cases where closed-form solutions are krimwithey are rela-
tively few, and can be looked up in common tables of conjugattibutions. If the
prior and likelihood are conjugate, then the routine cantheaames, parameters

list andestimate methods to look up and implement the correct formula for tipda
e Look up the model'ssame for both prior and likelihood in the table of conjugates.
e If the likelihood has a nONULL parameters element, then use it.

e Else, use the inputata, and theestimate method of the likelihood, to find

parameters for the likelihood.

e Combine the likelihood'parameters element with theparameters element
of the prior via the formula from the conjugate table, to proelthe set of pa-

rameters for the output model.

If the distribution pair is not in the conjugate table, the@ mrust resort to numeric
approximation. Gibbs sampling is an appropriate defautbbee it makes minimal
assumptions about the underlying distribution. The pracetasically involves using
thedraw method of the prior to select a candid&tethen using th@og_likelihood
method of the likelihood to find the odds of the candidatgiven the data, and using
the likelihood to reject or accept the candidate. Afterrdisting all accepted values
of @ into bins, the output is a PMF model.

Because so few assumptions are made about the form of thd,rondean update
models well beyond the typical closed-form distributioippose that a simulation
produces some output parameters given input parametersharsimulation designer

later decides that the input parameters are not fixed but $@we prior distribution.
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Then this function could Bayesian update using a distrilsupirior and a likelihood
provided by a simulation.

Finally, the output of the Bayesian updating routine is glev@a model object (either
from the conjugate table or a histogram), so one can chaiatingfsteps over several

new data sets by simply sending the output from one updatémisto the next.

Constrained models

An equality constraint, such as fixing = 0, reduces am dimensional model to an
n — 1 dimensional model.

The problem of generating an equality-constrained mod®i ispportunity to write
afunction that takes in a model and outputs a new modeék A parameters function
would take in a model and a mask, where the mask is a set of pteesof the type that
the given model would usually use, but with markers (sudnefis) in some locations.
Where there is a non-marker value, the model retains thaeviar all uses of the
model; where there is a marker, the model will leave thatipatar unknown and free
to vary.

The function can use the inputs to generate a new model wkierg method is an
intermediary that takes in the abbreviated set of free patars, fills in the full set of

parameters, and then calls the method of the original model.

Missing data

In the typical estimation, there are a set of unknown pararaetnd data that is fixed
and immutable, and the MLE searches the space of paraméteasmaximum like-
lihood imputation, the holes in the data are unknown, patara@re assumed known
beforehand, and the MLE searches the space of missing diats.po

In this case, we treat our parameters as data, and our dataarsgters. Further,
most of the data are fixed at observed values, leaving us tolseaer what are hope-
fully only a few missing points.

One could again implement these modifications via a simplesformation at each
method call. First, thel_imputation method would take in data (with markers) and

a parameterized mode| from which the data is claimed to have been derived (the
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best-fitting Multivariate Normal is a common choice).

Thep, likelihood, andestimate methods for the fixed model (hamerif) can
again be simple intermediaries, which swap the parameténghe data, then call the
appropriate method af.

This fixes the problem of doing an ML search over data usingsgesy built around
conducting ML searches over parameters. But the search t/apall data points, but
only those marked missing. This problem was solved above:fila_parameters
function can take imf and generate a new model that has only free parameters at the

markers.

Conclusion

From my own experience, Definition 2, defining a model as mtatiating between
data, parameters, and likelihoods draws a good balancebetheing as descriptive as
possible and maintaining simplicity. The model form is beaough that it can easily
be filled in for new models (initially making heavy use of ddfa), but has enough
substance that functions that call models can do a greabfleairk. Because the list
of methods in a model is relatively short and defaults arevidesd, one can produce
transformed models with relatively little effort; outsitlee-model functions such as
Bayesian updating will then work on the new models with naHer modification.
Although all models are constrained to fit one form, this fdras proven to be a
comfortable fit for models from diverse genres. The libragcdssed in the appendix
already includes model objects from the generalized lingzdel family; distributions
of one, two, or many parameters and data dimensions; ancar@amgtric models such
as histograms, Loess, or kernel densities. In my own worlgen&tbased modeling
[Klemens, 2007], | have used this form to write microsimiglas and, thanks to the
standard form, apply tools originally written for the abawere traditional models.
Grammar is irrelevant to the discussion here, and the sonbalel object described
could be implemented in C, Java, Lisp-stat, R, or any othetenolanguage. What is
important is the selection of a structure at the right le¥aletail, so that models and

tools from all paradigms can be described in a useful way.
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Appendix: A worked example using Apophenia

Apophenia is a library of functions and models for scientifiad statistical comput-
ing, written in C. Its original intent was to preserve theepp@eeded for large-scale
simulation, while providing the tools and conveniencesifamto users of high-level
statistics packages. For a full overview of Apophenia ardttiols one would need to
efficiently and conveniently do statistics in C, see Klemi@@98].

Figure 2 gives an overview of thepop_model object. The top of the figure pro-
vides a partial list of elements, with some notes on theimfr The default methods
are implemented not via a parent object from which new moidélsrit, but via dis-
patch functions that take in a model, check for the given oetland then continue
appropriately. The bottom of the figure presents the keyadépfunctions.

The remainder of this appendix implements a motivating edarfrom the begin-
ning of the paper: estimating and evaluating a series of ls@iginst the same data.
Figure 3 presents a basic textbook-style example in C, usmépophenia library and
its implementation of a model object. No important detadsdnbeen hidden in pseu-
docode: this example can be compiled and run as-is. Thosenilidr with C should
be able to follow the gist, if not the precise details; C experill note several points
of bad style for the sake of making the code easier for noregsp

The program (I) generates some synthetic data, (llI) estisntite parameters of
three different models using that data, then (lll) generateother small data set and
gets three sets of predicted values using the three estimaidels and the small data
set.

Here is a quick outline of the code. The focus will be on the parison of disparate

models, so other details of coding will be set aside.

e To keep the example self-contained, phase (I) generatebetimdata for the

analysis.MVN is a copy of the base Multivariate Normal, with parametels-al
1127 1.5

0|15 1.7
ters indicate that this copy is a distribution 0. Themake_draws function

cated and then set §i|X] =

] . The dimension of the parame-

will make a single draw from this distribution, so applyiriga the rows of the

testdata matrix produces a matrix with one two-element draw per réwses
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the GNU Scientific Library’s RNG system for randomizatioroj@h, 2003].

e In phase (ll), themodel_list includes an OLS model, a Loess model, and a
Multivariate Normal—three very different views of how tived variables relate,
and very different methods of computation. The code will mak mention of

the specific models after this line.

e Estimation consists of stepping through the list of un-peeterized input mod-

els,model_list, to produce a list of parameterized output modeds, list.

e Having produced an array of estimated models, phase (lbjdat how each
predicts outcomes. A small data set is generated, in the saammer as the
training set above, then the first column pulled out and egavithNaNs; for
the sake of brevity, this routine does not save the origiatd tbr calculating and

comparing residuals.

e A for loop then iterates through the array of estimated modelsddyte a
series of filled-in data sets. Because thedict function modifies its input,
a copy of the test data is made for each model. The methodsigeodarious

outputs, but for brevity and clarity, only the predictiohemselves are displayed.

The result (sorted and reformatted for print) is as in Figur®LS and Loess give
close predictions all the way across the range, indicatingltoess’s greater flexibility
adds little for this special case. For the negative end ofréimge, Loess and OLS
give predictions for the first variable that are higher thla@ Multivariate Normal’s
predictions. To keep the exposition simple and printalile,éxample includes only
ten test points, but these broad characteristics hold fgefadata sets as well.

Bear in mind that the data was generated using a MultivaNatenal modelMVN,
and the last column of the table is based on a Multivariaterdwith parameters
estimated using 10,000 draws0fN. Therefore, the final column yields values very
close to the conditional expected value for the true modehfivhich the data was

generated.
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(a) Probability or log likeli- (b) Estimation (c) Random draws, ex-
hood pected value, prediction

Figure 1: A model intermediates between data, likelihoads, parameters. The type
of operation is determined by whether the inputs are datappeters, or both.
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Elements

name Simple text, for display and lookup.

parameters The parameters estimated by the model; possibly free inpufs-, -). Of
typeapop_data: a collection of vectors and matrices.

data The data set: fixed inputs tB(-,-). A collection of vectors and matrices,
typically one observation per row.

info Auxiliary information such as covariances or residuals.

settings A list of settings groups, providing details for routinesklas for MLE or

double constraint
(data, model)
void prep(data,
model)

Dispatch functions

Bayesian updating, or for models such as PMFs.

Test that the data falls within a constraint. If not, returpemalty. Allows
for constrained MLE.

Check that data is in proper form, allocate settings gro&ips,

apop_model *apop_estimate(data,

model)

double apop_p(data, model)

double apop_log_likelihood(data,

model)

double apop_cdf(data, model)

void apop_score(data, gradient,

model)

void apop_predict(data, model)

void draw(out, r, model)

void print(model)

Estimate the parameters of the model given data.
Produces a model wittparameters, info, and
settings. Default via MLE.

Given a model withparameters, the probability of
the data, parameters, and model.

Same aapop_p, but log likelihood.

Integral of the CDF to the given data point. Default via
random draws.

Fills in the gradient of the log likelihood. Default via
delta method.

Fillin NaNs in thedata using the expected value given
the available data. Given no data, this is the plain ex-
pected value. Default via ML imputation.

Given ags1l_rng hamedr (i.e. arandom number gen-
erator from the GNU Scientific Library), fibut with

a draw frommodel. Default via Adaptive Rejection
Markov Sampling.

Display information about the model in a manner fa-
miliar to users from the model’'s paradigm.

Figure 2: Selected elements of Apophenig®p_model, and the dispatch functions
for callingp, log_likelihod, and other methods.



Multi-paradigm modeling

#include <apop.h>

gsl_rngxr;

apop_modelxMVN;

static void make_drawsys|_vector«row){ apop_draw(row>data, r, MVN); }

int main(){

/IPhase I: generate data
r=apop_rng_alloc(13);
MVN = apop_model_copy(apop_multivariate_normal);
MVN —>parameters = apop_data_alloc(2,2,2);
apop_data_fill(MVN->parameters, 1, 2.7, 1.5,

0, 1.5, 1.7);
apop_dataxtraining_data = apop_data_alloc(0, 10000, 2);
apop_matrix_apply(training_datematrix, make_draws);

/IPhase II: estimate
apop_modelmodel_list[] = {apop_loess, apop_ols, apop_multivariatermal};
int list_size = 3;

apop_modelxest_list[list_size];
for (int i=0; i<list_size; i++)
est_list[i] = apop_estimate(training_data, model_ilist[

/[Phase IlI: predict

apop_dataxtestdata? = apop_data_alloc(0, 10, 2);
apop_matrix_apply (testdata2matrix, make_draws);
Apop_col(testdata2, 0, to_nan);
gsl_vector_set_all(to_nan, NaN);

apop_dataxpredictions]list_size];

for (int i=0; i<list_size; i++){
predictions[i] = apop_predict(apop_data_copy(tes@iatst_list[i]);
apop_data_show(predictionsi]);
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Figure 3: Testing and comparing a list of models. The codésisedted in the text.
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X Loess OLS MVN

-2.256 -0.955 -0.975 -1.049
-2.027 -0.757 -0.775 -0.978
-1.144| -3.39e-4 -4.32e-3 -0.178
-0.541 0.506 0.522 0.303
0.129 1.098 1.106 1.110
0.223 1.186 1.188 0.929
1.131 1.971 1.981 1.496
1.281 2.103 2.112 1.930
1.542 2.336 2.340 2.088
3.160 3.839 3.752 3.685

Figure 4: Let data be of the forfiy X]. The table gives three different predictions for
Y. Output from Figure 3.



