
Designing a computational system for
multi-paradigm modeling

Ben Klemens
U.S. Census Bureau

ben.klemens@census.gov∗

March 11, 2010

Abstract

This paper discusses the design of a framework for scientificcomputing in-

tended to accommodate a wide range of models, from ordinary least squares to

agent-based microsimulations, thus allowing easier comparison and discussion

across different schools of modeling. The paper begins withtheoretical issues

in defining a model, and concludes with running code applyingsome common

operations to disparate models.

Keywords: statistic, simulation, modeling, computational analysis, methodology.

Introduction

Members of different schools of modeling literally speak different languages: authors

of agent-based models (ABMs) will typically write in a general programming language

like Java using one of many ABM-specific libraries, while discrete-event simulation au-

thors will use other libraries (such as SimPy); generalizedlinear model (GLM) users

may use R’s GLM-specific syntax for models; Bayesians may prefer Bugs; demo-

graphic analysts often work in SAS or SPSS; and so on.

∗The author would like to thank Amber Baum, Derrick Higgins, Guy Klemens, Lynne Plettenberg,
Rolando Rodríguez, and Aref Dajani for comments and support. This report is released to inform inter-
ested parties of ongoing research and to encourage discussion. The views expressed are those of the author
and not necessarily those of the U.S. Census Bureau.

1



Multi-paradigm modeling 2

This paper discusses some of the challenges, both theoretical and practical, to pro-

viding a single computational object that can be used for describing the full range of

models from traditional statistical modeling to simulation modeling. Such a framework

would facilitate comparing models across paradigms, mixing paradigms, or using tools

written by advocates of one paradigm to study models from another. For example, a

researcher may wish to use a Probit regression to elucidate her microsimulation re-

sults, while another may find that a Loess smoothing step—a common technique from

generalized linear modeling—improves his simulation results.

The simplest scenario is comparison across genres: how do the results of a demo-

graphic analysis match up with the results from a GLM estimation? Researchers are

more likely to ask such questions when they do not need to spend time forcing the

formats of inputs and outputs from the models to agree.

A hierarchical model consists of a collection of smaller independent models and

a parent model that aggregates statistics from each smallermodel; there is no need

for parent and child to be from the same modeling paradigm. Consider a model of

smoking in a school: the child models could be several network models of individual

classrooms, and the parent a school-wide fit of the best-fitting Normal distribution for

the count of smokers in each classroom. Given consistent semantics across models, one

could swap out the child network model for an OLS regression,or replace the parent

distribution with a kernel density estimate. One could do similar paradigm merging

with Bayesian updating, where two input models (perhaps from different genres) are

combined to produce an output model.

Within a single paradigm, a structured model object also hasbenefits. The most

notable is the provision of defaults for structure elementsnot explicitly defined. Begin

by writing a probability function and nothing more. Given the probability function,

estimate parameters via maximum likelihood; then, given parameter estimates, esti-

mate their variance via bootstrapping; then, given variances, test hypotheses about the

parameters. As time allows, replace computationally-intensive default routines with

model-specific methods for the estimation of parameters or calculation of variances.

This paper begins at the broad level of theory, and proceeds to increasing levels

of technical detail. After a brief discussion of some prior literature, it will ask how

one could best use mathematical definitions of statistical models for computational



Multi-paradigm modeling 3

purposes. Given a definition in theory, the discussion turnsto some of the many details

and issues that arise when the model object is implemented incode. The paper will

then present applications of the model structure, including its use in procedures like

Bayesian updating or in producing new models. Finally, because this paper strives to

address real-world issues of implementation, an appendix presents a working example

of the principles laid out in the previous sections, comparing models from different

genres.

Prior literature

Few statistics packages and libraries have attempted to unify statistical models under a

single framework; this section will contrast two that do: Zelig [Imai et al., 2008] and

Lisp-Stat [Tierney, 1990]. Zelig embodies a specific type ofworkflow by imposing a

specific interface on the model, while at the other end of the spectrum, Lisp-Stat goes

out of its way to allow any model by imposing as little framework as possible.

Object-oriented systems like C++ or Java require a class or object declaration,

which defines the form to which all objects in the class must conform. Zelig follows

this lead, defining a class format into which it places a largeset of contributed models.

The class structure is intended for models that explain a single outcome variable using

a set of input variables—basically, the traditional GLM framework—and therefore lim-

its itself to functions useful for that style of analysis, including key routines to estimate

model parameters, fix explanatory variables, present attractive outputs, and so on. The

specific model template does much to simplify work in this given workflow, but has

little utility for problems that stray from that form.

Lisp-Stat follows the mold of object-oriented systems based on an inheritance

structure, where specific models inherit from a relatively abstract model. Specific types

of GLM, for example, would inherit from a GLM prototype (which Tierney [1991] im-

plements). A model may respond to any from a long list of messages, including simple

requests like:
oef-estimates to get the estimated coefficients, on up to relatively

specialized and computation-intensive commands like:
ooks-distan
e.

Tierney explicitly rejects class formats as too restrictive [p 206]. Instead, a model

is simply a Lisp-style list of data or procedures, and authors may add as many new



Multi-paradigm modeling 4

items to the list as are useful, without class-defined constraints. Thus, the system’s

key strength is that it is flexible, and new methods may easilybe added to any model.

[Methodis object-oriented jargon for a procedure that is held inside of an object or

structure.]

For our purposes, the system’s key failing is that it is flexible, and new methods may

easily be added to any model. Each class of model will have itsown set of functions

that make sense for its genre of modeling, so there is no guarantee that the internals of

any two models will match sufficiently well that one could be swapped for another in

a given procedure.

The problem, then, is to define a class structure that is broadenough to usefully

describe any model, but sufficiently limited that we can be guaranteed that every model

implements every method included in the definition.

Defining the model object

McCullagh [2002] gives a long list of authors who either explicitly or implicitly use

a definition of parameterized statistical model akin to the following, given a sample

spaceS and the space of all probability distributionsP :

Definition 1 A parameterized statistical model is a parameter setθ together with a

functionP : θ → P(S), which assigns to each parameter pointθ ∈ Θ a probability

distributionPθ onS.

See also Hill [1990, p 119], who gives another definition along McCullagh’s mold.

For example, a Normal model in this context is a function in three variables:P (s, µ, σ),

wheres is a scalar data point,µ the mean, andσ the standard deviation. Selecting a sin-

gle element in the parameter space, such as(µ = 0, σ = 1), fixes a single probability

distribution, a function of one variable,P (s).

Roughly, the definition describes a model using three characters: a data sets ∈ S,

parametersθ from the parameter spaceΘ, and probabilitiesP (·). It defines the model

as the mappingθ → P (·). However, there are reasons to map other elements of the

definition to other elements—say, data to parameters. With that in mind, this definition

of a model adds useful generality to the prior definition:



Multi-paradigm modeling 5

Definition 2 A model intermediates between data, parameters, and likelihoods.

Presuming that we want to begin with input of fixed data or fixedparameters, the term

intermediatesunfolds to a number of different mappings:s → θ, (θ, s) → P , or

θ → s. These three directions are are depicted in Figure 1.

In code, the likelihood function has a signature of the formlikelihood(data,parameters), returning a scalar real number. Following the mapping in Definition 1,

fixing parameters to a constant value reduces this function to a probability distribu-

tion P (S).

However, there is more to be done. Given data, one could generate a distribution of

parameters: fixs and thus reduceP (S, Θ) toP (Θ). Some authors, most notably Fisher

[1934, p 287], are adamant that this is alikelihood function, whileP (S) is aprobability

function, and the two should remain separate in interpretation. The computer is entirely

indifferent to the distinction, and any differences in interpretation are up to the user.

The estimation problem goes from input data to parameters,s → θ. A maximum

likelihood estimation (MLE) would execute the mappings → P (Θ), then find the

most likely value ofθ. But there are often other methods available. For the Normal

model, a full maximum-likelihood search would be silly: themost likelyµ is the data

mean, and the most likelyσ the square root of the sample variance.

Given parameters, one can generate new data (θ → s). By the traditional model,

random data generation involves fixing the parameters, thenmaking a large volume of

draws from the distributionP (S). Computationally, this method is typically the worst

case. Rather, there is a thick book of tricks to make efficientrandom draws without

explicitly evaluating likelihoods (i.e. Devroye [1986]).The expected value is another

salient point in the spaceS that could be derived fromθ via P (·); again, one can

find it via millions of draws fromP (S) or, for many models, a simple closed-form

computation.

Definition 2 expands Definition 1 by including all mappings among data, parame-

ters, and likelihoods in the model definition, thus making room for specification in code

of the simple estimation routine for the Normal model or the many tricks for drawing

random numbers. Perhaps more importantly, the definition indicates what is not in the

model: Bayesian updating and Cook’s distance, for example,will be implemented as

functions outside the model object that will take models as inputs.



Multi-paradigm modeling 6

Simulations versus distributions

The discussion above took the core of the model as a probability distribution, but

simulation-type models, centered around explicitly describing the interaction among

several elements of a system, often do not center around a probability density. Nonethe-

less, under appropriate assumptions, a probability distribution does materialize.

For a function to be a probability distribution, it must meettwo criteria: it is a

function over a given space that integrates to one, and is always nonnegative.

Even the requirement that the function integrate to one is not necessary for most

purposes: maximum likelihood routines make no use of the requirement, and strategies

to make random draws from an arbitrary function typically use only relative values of

the function from which draws are made. Of the methods described in the application

section below, only Kullback-Leibler divergence and, in some cases, Bayesian updating

use this requirement.

Consider a simulation intended to approximate observed data. The distance be-

tween the simulated output and the observed value(s) can be easily be calculated using

an appropriate metric, and, given distanced, p can be defined as a monotonically de-

creasing function of distance, such as1/(1 + d) or e−d. This short paper is not an

appropriate venue for discussing the choice of transformation, but note that the Infor-

mation Equality indicates that the choice of transformation is frequently not relevant;

see, e.g., Pawitan [2001].

Without target data, models with a stochastic component generate probability dis-

tributions over output values directly. Let input data be a vectorX, and outputs a scalar

Y ; then each run is a draw from the distributionP (Y |X) implicit to the assumptions

and stochastic elements of the simulation. A random number generation scheme im-

plies a probability distribution (and vice versa), so we again have enough for full use

of the framework below.

The methods in the section on applications, below, include anumber of common

statistical methods that I feel are underused outside of thetradition of closed-form

statistics. The next section will show that, once an author has written down an inverse-

distance function to evaluate a set of model parameters, therest of a full statistical

model can quickly be filled in, and the statistical methods used directly.



Multi-paradigm modeling 7

Implementation

To this point, the computational model object would includep (or probability),

randomdraw, estimate, andexpe
ted_value (or, as discussed below,predi
t)

methods. These functions would be declared as part of the model class specification,

and thus would have the same signature for all models. The Bayesian updating routine

below will make use of aname element, which is naturally also useful for any output

routines.

A model intermediates between data, parameters, and likelihoods, so the model

object will naturally require a link to the originaldata set used for estimation and a

list of parameters.

As a side-note, the authors of the R package, Gentleman and Ihaka [2000], advocate

lexical scoping to bind the values of the general form, like fixing N (x, µ, σ) with

a given specific set of parameters (likeµ = 0, σ = 1) to produceP (x). When a

function is declared, it is stored in a larger list that includes both the function and the

environment in which the function was declared. Whatever valuesµ andσ had when

this list was initialized are stored in the environment, andused as the function’s fixed

values. Thus, R generates anad hocstructure using the environment to store parameters

and data for a single method. An explicitly-defined model object can simply hold the

parameter values directly.

Default methods

If two models are similar, then the author of the second should be able to use the

methods from the first, rather than rewriting them. Inheritance from a parent model is

easy: just copy the parent model and thus all of its methods, then replace any individual

methods that differ.

This is useful when two models are similar, but should the author have no model

to work off of, the system should also provide default methods. One could implement

default methods via a model at the base of a formal inheritance tree; in the appendix,

they will be implemented via a set of wrapper functions.

In the simple C-like pseudocode to follow, the= symbol indicates assignment, andmodel.p refers to thep element held inside themodel structure.



Multi-paradigm modeling 8

Definition 1 focused on a probability function, so say that anauthor writes only the

probability function for a new model:new_model.p = 
arefully_written_probability_fn(., .)new_model.log_likelihood = <undefined>new_model.predi
t = <undefined>...
The author provided nothing more, but every other method canbe derived via a

computationally-intensive method. To give the simplest example, alog_likelihood
function would take in a data set and a model, and return the result of a simple if-then:if model.log_likelihood existsreturn model.log_likelihood(data, model)elsereturn log(model.p(data, model))

That is, if there is a log likelihood function to be had, then use it; if not, then find

the log likelihood via the log ofp. In practice, one or the other is typically more precise

and easier to calculate—statisticians lean toward log likelihood, while simulations tend

to arrive at a simplep.

Other methods will also use the specific model’s function if available, and a fill-in

default otherwise. For example, an ordinary least squares (OLS) model would have

anestimate method solving the linear algebra equation for OLS parameters, while

elaborate models with only ap function would resort to the default of MLE.

Models with no explicit random number generator (RNG) coulduse Adaptive Re-

jection Markov Sampling [Gilks et al., 1995]. The score (i.e. the gradient of the log

likelihood function) can be calculated using a delta method. Conversely, a model that

provides only an RNG can produce a probability distributioneither by binning several

draws into a probability mass function (a PMF, see below) andpossibly smoothing the

PMF via kernel smoothing, Loess, or other methods.

Now consider missing data, prediction, and expected values. Begin with a tuple

of data of the form[Y X ], and say thatY is missing, leaving[NaN X ] (whereNaN
is read asNot a number). This is a common setup for maximum likelihood (ML)



Multi-paradigm modeling 9

imputation: given the model and existing data, find the most likely fill-in for the NaN
value. This is also the prediction story for GLMs: the full data set[Y X ] is known

when estimating parameters, butY is missing and to be filled in when predicting. For

a distribution, given data[NaN X ], the best fill-in is typically the conditional expected

value,E(Y |X). The unconditional expected value is the special case whereno data is

available, and all values must be filled in. Thus, a singlepredi
t function with an ML

imputation default can act as a missing data, prediction, and expected value routine. As

with log likelihood and maximum likelihood, ML imputation requires only ap method

to find a computationally-intensive solution, but specific models can add special cases

when closed-form solutions exist.

At this point, every model has a small set of functions that has the same form in

every model. As long as the model author wrote some methods for the model (probably

the log likelihood function), then all of the other methods are guaranteed to work and

return good values via the default dispatch functions, although the results may be more

computationally intensive than necessary.

Applications

This section shows some uses of the model object, including functions that take models

as inputs, and transformations of models to produce new models, such as fixing most

of the parameters of a multidimensional model to produce a unidimensional model.

Some applications are immediate. Producing covariances via bootstrapping and

jackknifing involves generating a series of subsets of a maindata set, re-running theestimate method of a model on each subset, and finding the overall variance using

the list of subset parameters. Tierney’s example of Cook’s distance also asks only

anestimate method of a model. In all of these cases, the procedure uses only one

element of the model interface, so the procedure can be a function that calls a model as

input rather than being a method internal to the model itself.



Multi-paradigm modeling 10

Data sets as models

Consider drawing from an urn filled with black, white, and redballs, where 150 black

balls, 50 white, and 50 red balls were pulled. This set of observations can be read as

a data set of 250 elements, or as a probability model, where drawing from the urn is

a Bernoulli draw with observed odds of black equal to 60%, andodds of white and of

red equal to 20% each.

That is, the data can be read as a probability mass function (PMF), aka a histogram.

With a continuous range of options andn → ∞, the histogram becomes a common

probability distribution function (PDF).

Only a few methods need be set to generate the model. First, save the original data

set, one possibly weighted observation per row. Then write ap(new_data, model)
function to check the frequency ofnew_data within the saved data set, write adraw
function that draws a random row from the data set, and leave everything else to default

methods.

For an application, Kullback-Leibler divergence is used tomeasure a pseudo-distance

between distributions. Given two models,a andt, the total divergence is

∫

∀x

ln (t(x)/a(x)) t(x)dx.

That is, it is the expected value ofln(t(x)/a(x)) given thatx is distributed as the

probability distribution associated with modelt.

Given two models where one has adrawmethod and both havelog_likelihoods,

one can calculate this integral as follows, wheren is the number of draws (typically

thousands or millions):val = 0repeat n times:x = t.draw //i.e. draw from the t modelval = val + t.log_likelihood(x) - a.log_likelihood(x)return val/n
Because any given value ofx is drawn in proportion tot.p(x), this gives the

correctly-weighted expected value.

Given a theoretical modelt, and an observed data set converted into a PMF, one



Multi-paradigm modeling 11

could find the divergence of the data from the theoretical distribution. Similar things

can be done for other data-versus-model routines, such as Chi-square or Kolmogorov-

Smirnov tests of data’s divergence from a hypothesized model.

Bayesian updating

Bayesian updating is a process that takes in two model objects and produces a new

model object as output.

There are some cases where closed-form solutions are known,but they are rela-

tively few, and can be looked up in common tables of conjugatedistributions. If the

prior and likelihood are conjugate, then the routine can usethenames, parameters
list andestimatemethods to look up and implement the correct formula for updating:

• Look up the model’sname for both prior and likelihood in the table of conjugates.

• If the likelihood has a non-NULL parameters element, then use it.

• Else, use the inputdata, and theestimate method of the likelihood, to find

parameters for the likelihood.

• Combine the likelihood’sparameters element with theparameters element

of the prior via the formula from the conjugate table, to produce the set of pa-

rameters for the output model.

If the distribution pair is not in the conjugate table, then we must resort to numeric

approximation. Gibbs sampling is an appropriate default because it makes minimal

assumptions about the underlying distribution. The procedure basically involves using

thedraw method of the prior to select a candidateθ, then using thelog_likelihood
method of the likelihood to find the odds of the candidateθ given the data, and using

the likelihood to reject or accept the candidate. After distributing all accepted values

of θ into bins, the output is a PMF model.

Because so few assumptions are made about the form of the model, one can update

models well beyond the typical closed-form distributions.Suppose that a simulation

produces some output parameters given input parameters, and the simulation designer

later decides that the input parameters are not fixed but havesome prior distribution.



Multi-paradigm modeling 12

Then this function could Bayesian update using a distribution prior and a likelihood

provided by a simulation.

Finally, the output of the Bayesian updating routine is always a model object (either

from the conjugate table or a histogram), so one can chain updating steps over several

new data sets by simply sending the output from one updating step into the next.

Constrained models

An equality constraint, such as fixingβ1 ≡ 0, reduces ann dimensional model to an

n − 1 dimensional model.

The problem of generating an equality-constrained model isan opportunity to write

a function that takes in a model and outputs a new model. Afix_parameters function

would take in a model and a mask, where the mask is a set of parameters of the type that

the given model would usually use, but with markers (such asNaNs) in some locations.

Where there is a non-marker value, the model retains that value for all uses of the

model; where there is a marker, the model will leave that parameter unknown and free

to vary.

The function can use the inputs to generate a new model where every method is an

intermediary that takes in the abbreviated set of free parameters, fills in the full set of

parameters, and then calls the method of the original model.

Missing data

In the typical estimation, there are a set of unknown parameters and data that is fixed

and immutable, and the MLE searches the space of parameters.In a maximum like-

lihood imputation, the holes in the data are unknown, parameters are assumed known

beforehand, and the MLE searches the space of missing data points.

In this case, we treat our parameters as data, and our data as parameters. Further,

most of the data are fixed at observed values, leaving us to search over what are hope-

fully only a few missing points.

One could again implement these modifications via a simple transformation at each

method call. First, theml_imputationmethod would take in data (with markers) and

a parameterized modelm, from which the data is claimed to have been derived (the



Multi-paradigm modeling 13

best-fitting Multivariate Normal is a common choice).

Thep, likelihood, andestimate methods for the fixed model (name itmf) can

again be simple intermediaries, which swap the parameters with the data, then call the

appropriate method ofm.

This fixes the problem of doing an ML search over data using a system built around

conducting ML searches over parameters. But the search is not over all data points, but

only those marked missing. This problem was solved above: The fix_parameters
function can take inmf and generate a new model that has only free parameters at the

markers.

Conclusion

From my own experience, Definition 2, defining a model as intermediating between

data, parameters, and likelihoods draws a good balance between being as descriptive as

possible and maintaining simplicity. The model form is brief enough that it can easily

be filled in for new models (initially making heavy use of defaults), but has enough

substance that functions that call models can do a great dealof work. Because the list

of methods in a model is relatively short and defaults are provided, one can produce

transformed models with relatively little effort; outside-the-model functions such as

Bayesian updating will then work on the new models with no further modification.

Although all models are constrained to fit one form, this formhas proven to be a

comfortable fit for models from diverse genres. The library discussed in the appendix

already includes model objects from the generalized linearmodel family; distributions

of one, two, or many parameters and data dimensions; and nonparametric models such

as histograms, Loess, or kernel densities. In my own work in agent-based modeling

[Klemens, 2007], I have used this form to write microsimulations and, thanks to the

standard form, apply tools originally written for the abovemore traditional models.

Grammar is irrelevant to the discussion here, and the sort ofmodel object described

could be implemented in C, Java, Lisp-stat, R, or any other modern language. What is

important is the selection of a structure at the right level of detail, so that models and

tools from all paradigms can be described in a useful way.



Multi-paradigm modeling 14

Appendix: A worked example using Apophenia

Apophenia is a library of functions and models for scientificand statistical comput-

ing, written in C. Its original intent was to preserve the speed needed for large-scale

simulation, while providing the tools and conveniences familiar to users of high-level

statistics packages. For a full overview of Apophenia and the tools one would need to

efficiently and conveniently do statistics in C, see Klemens[2008].

Figure 2 gives an overview of theapop_model object. The top of the figure pro-

vides a partial list of elements, with some notes on their format. The default methods

are implemented not via a parent object from which new modelsinherit, but via dis-

patch functions that take in a model, check for the given method, and then continue

appropriately. The bottom of the figure presents the key dispatch functions.

The remainder of this appendix implements a motivating example from the begin-

ning of the paper: estimating and evaluating a series of models against the same data.

Figure 3 presents a basic textbook-style example in C, usingthe Apophenia library and

its implementation of a model object. No important details have been hidden in pseu-

docode: this example can be compiled and run as-is. Those unfamiliar with C should

be able to follow the gist, if not the precise details; C experts will note several points

of bad style for the sake of making the code easier for non-experts.

The program (I) generates some synthetic data, (II) estimates the parameters of

three different models using that data, then (III) generates another small data set and

gets three sets of predicted values using the three estimated models and the small data

set.

Here is a quick outline of the code. The focus will be on the comparison of disparate

models, so other details of coding will be set aside.

• To keep the example self-contained, phase (I) generates synthetic data for the

analysis.MVN is a copy of the base Multivariate Normal, with parameters allo-

cated and then set at[µ|Σ] =

[

1

0

∣

∣

∣

∣

∣

2.7 1.5

1.5 1.7

]

. The dimension of the parame-

ters indicate that this copy is a distribution overR
2. Themake_draws function

will make a single draw from this distribution, so applying it to the rows of thetestdata matrix produces a matrix with one two-element draw per row. It uses



Multi-paradigm modeling 15

the GNU Scientific Library’s RNG system for randomization [Gough, 2003].

• In phase (II), themodel_list includes an OLS model, a Loess model, and a

Multivariate Normal—three very different views of how the two variables relate,

and very different methods of computation. The code will make no mention of

the specific models after this line.

• Estimation consists of stepping through the list of un-parameterized input mod-

els,model_list, to produce a list of parameterized output models,est_list.

• Having produced an array of estimated models, phase (III) looks at how each

predicts outcomes. A small data set is generated, in the samemanner as the

training set above, then the first column pulled out and replaced withNaNs; for

the sake of brevity, this routine does not save the original data for calculating and

comparing residuals.

• A for loop then iterates through the array of estimated models to produce a

series of filled-in data sets. Because thepredi
t function modifies its input,

a copy of the test data is made for each model. The methods produce various

outputs, but for brevity and clarity, only the predictions themselves are displayed.

The result (sorted and reformatted for print) is as in Figure4. OLS and Loess give

close predictions all the way across the range, indicating that Loess’s greater flexibility

adds little for this special case. For the negative end of therange, Loess and OLS

give predictions for the first variable that are higher than the Multivariate Normal’s

predictions. To keep the exposition simple and printable, the example includes only

ten test points, but these broad characteristics hold for larger data sets as well.

Bear in mind that the data was generated using a MultivariateNormal model,MVN,

and the last column of the table is based on a Multivariate Normal with parameters

estimated using 10,000 draws ofMVN. Therefore, the final column yields values very

close to the conditional expected value for the true model from which the data was

generated.



Multi-paradigm modeling 16

References

Luc Devroye.Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

R A Fisher. Two new properties of mathematical likelihood.Proceedings of the Royal

Society of London. Series A, Containing Papers of a Mathematical and Physical

Character, 144(852):285–307, March 1934.

Robert Gentleman and Ross Ihaka. Lexical scope and statistical computing.Journal

of Computational and Graphical Statistics, 9(3):491–508, 2000.

Wally R Gilks, N G Best, and K K C Tan. Adaptive rejection Metropolis sampling

within Gibbs sampling.Journal of the Royal Statistical Society. Series C (Applied

Statistics), 44(4):455–472, 1995.

Brian Gough, editor.GNU Scientific Library Reference Manual. Network Theory, Ltd,

2nd edition, 2003.

Joe R Hill. A general framework for model-based statistics.Biometrika, 77(1):115–

126, March 1990.

Kosuke Imai, Gary King, and Olivia Lau. Toward a common framework for statistical

analysis and development.Journal of Computational and Graphical Statistics, 17

(4):892–913, December 2008.

Ben Klemens.Modeling with Data: Tools and Techniques for Statistical Computing.

Princeton University Press, 2008.

Ben Klemens. Finding optimal agent-based models. Brookings Center on Social and

Economic Dynamics Working Paper #49, 2007.

Peter McCullagh. What is a statistical model?The Annals of Statistics, 30(5), October

2002.

Yudi Pawitan.In All Likelihood: Statistical Modeling and Inference Using Likelihood.

Oxford University Press, 2001.

Luke Tierney. Generalized linear models in LISP-STAT. Technical report, 1991.

Luke Tierney.LISP-STAT: An Object-Oriented Environment for Statistical Computing

and Dynamic Graphics. Wiley-Interscience, 1990.



Multi-paradigm modeling 17

data

model/likelihood

parameters

(a) Probability or log likeli-
hood

data

model/likelihood

parameters

(b) Estimation

data

model/likelihood

parameters

(c) Random draws, ex-
pected value, prediction

Figure 1: A model intermediates between data, likelihoods,and parameters. The type
of operation is determined by whether the inputs are data, parameters, or both.



Multi-paradigm modeling 18

Elementsname Simple text, for display and lookup.parameters The parameters estimated by the model; possibly free inputsto P (·, ·). Of
typeapop_data: a collection of vectors and matrices.data The data set: fixed inputs toP (·, ·). A collection of vectors and matrices,
typically one observation per row.info Auxiliary information such as covariances or residuals.settings A list of settings groups, providing details for routines such as for MLE or
Bayesian updating, or for models such as PMFs.double 
onstraint(data, model) Test that the data falls within a constraint. If not, return apenalty. Allows
for constrained MLE.void prep(data,model) Check that data is in proper form, allocate settings groups,&c.

Dispatch functionsapop_model *apop_estimate(data,model) Estimate the parameters of the model given data.
Produces a model withparameters, info, andsettings. Default via MLE.double apop_p(data, model) Given a model withparameters, the probability of
the data, parameters, and model.double apop_log_likelihood(data,model) Same asapop_p, but log likelihood.double apop_
df(data, model) Integral of the CDF to the given data point. Default via
random draws.void apop_s
ore(data, gradient,model) Fills in the gradient of the log likelihood. Default via
delta method.void apop_predi
t(data, model) Fill in NaNs in thedata using the expected value given
the available data. Given no data, this is the plain ex-
pected value. Default via ML imputation.void draw(out, r, model) Given agsl_rng namedr (i.e. a random number gen-
erator from the GNU Scientific Library), fillout with
a draw frommodel. Default via Adaptive Rejection
Markov Sampling.void print(model) Display information about the model in a manner fa-
miliar to users from the model’s paradigm.

Figure 2: Selected elements of Apophenia’sapop_model, and the dispatch functions
for callingp, log_likelihod, and other methods.



Multi-paradigm modeling 19

#include<apop.h>
gsl_rng∗r;
apop_model∗MVN;

static void make_draws(gsl_vector∗row){ apop_draw(row−>data, r, MVN); }

int main(){
//Phase I: generate data
r = apop_rng_alloc(13);
MVN = apop_model_copy(apop_multivariate_normal);
MVN−>parameters = apop_data_alloc(2,2,2);
apop_data_fill(MVN−>parameters, 1, 2.7, 1.5,

0, 1.5, 1.7);
apop_data∗training_data = apop_data_alloc(0, 10000, 2);
apop_matrix_apply(training_data−>matrix, make_draws);

//Phase II: estimate
apop_modelmodel_list[] = {apop_loess, apop_ols, apop_multivariate_normal};
int list_size = 3;

apop_model∗est_list[list_size];
for (int i=0; i<list_size; i++)

est_list[i] = apop_estimate(training_data, model_list[i]);

//Phase III: predict
apop_data∗testdata2 = apop_data_alloc(0, 10, 2);
apop_matrix_apply(testdata2−>matrix, make_draws);
Apop_col(testdata2, 0, to_nan);
gsl_vector_set_all(to_nan, NaN);

apop_data∗predictions[list_size];
for (int i=0; i<list_size; i++){

predictions[i] = apop_predict(apop_data_copy(testdata2), est_list[i]);
apop_data_show(predictions[i]);

}
}

Figure 3: Testing and comparing a list of models. The code is dissected in the text.



Multi-paradigm modeling 20

X Loess OLS MVN
-2.256 -0.955 -0.975 -1.049
-2.027 -0.757 -0.775 -0.978
-1.144 -3.39e-4 -4.32e-3 -0.178
-0.541 0.506 0.522 0.303
0.129 1.098 1.106 1.110
0.223 1.186 1.188 0.929
1.131 1.971 1.981 1.496
1.281 2.103 2.112 1.930
1.542 2.336 2.340 2.088
3.160 3.839 3.752 3.685

Figure 4: Let data be of the form[Y X ]. The table gives three different predictions for
Y . Output from Figure 3.


