Agent-based modelling + How to program in one e-z lesson

Ben Klemens



How to Program

[As taught by a theorist]
e Data structures
e functions
e function contents
e frames, scope, & encapsulation

e compilation and/or execution



Data structures
The basic types

e | nt: an integer
e f| oat: areal number (with a floating decimal point)

e char: a character. Java version: string



Data structures
structures

A combination of types, clumped into one header.

t ypedef struct ppp{
char* first _nane, |ast_nane;
fl oat hei ght, weight;
| nt age;

} person;

Almost all languages call subelements with a dot:

person steve;
steve. height = 175. 8;
st eve. age = 40;



Data structures
arrays

A numbered list of either pure types or strucutres.

fl oat grades[ 10];
person survey_dat a[ 200] ;

grades[ 3] = 0.68;
survey dat a[ 40] . hei ght = 160;



Functions
The black box

All functions take some input, do something, and return an output.

float get hw (person p){
float ratio;
ratio = p. height / p.weight;
return rati o;



Functions
The black box

All functions take some input, do something, and return an output.

float get hw (person p){
float ratio;
ratio = p. height / p.weight;
return rati o;

}

Function header summarizes this:

return_type what 1 _do (1 nput_types)



Function contents
assignment

Notice: one equals sign.
vari abl e = a val ue;
math

+ - */ %

Some cute 'n’ conveninet forms (Java, CT, C, asst others):

a += b; a =a + Db;
a -= b; a =a - b;
a *= b; a=a* Db;
a /= b; a =a/l Db
a % b; a =a %Db;
a++; a=a+ 1;

a- - ; a=a - 1;



Function contents
conditonal evaluation

If (a == b){ //two equal s signs
do_stuff;
}

el se

dont ;



Function contents
conditonal evaluation

If (a == b){ //two equal s signs
do_stuff;
}

el se
dont ;

Also:

varl > var?
varl <= var?2
varl
function(x)

If it evaluates to a zero it's false; else it's true.
whi | e loops

I = 0;

while(i< array limt){

use array_el ement (i);
| ++;



Function contents
conditonal evaluation

If (a == b){ //two equal s signs
do_stuff;
}

el se
dont ;

Also:

varl > var?
varl <= var?2
varl
function(x)

If it evaluates to a zero it's false; else it's true.
whi | e loops

I = 0;

while(i< array limt){

use array_el ement (i);
| ++;



Function contents: loops
f or loops

for(i=0; i< array limt; i++){
use_array el ement(i);



Comments
Use them.

/[* for long cooments, start with slash-star,
end wth star-slash. */

[/ For short comments, just start with two sl ashes
#Scri pting | anguages use an oct ot hor pe

oreX uses a percent sign.



That’s all you get.

To make it interesting, we build and package larger structures which do a
lot with little code.



The stack of frames
The function running now is the current frame. There can be only one.
If the function calls a new frame, then a new frame is created and runs.
Picture a stack of frames. Only the top frame is active and visible.

The bottom of the stack is the mai n() function or the top of the file
called.



The stack of frames
e The function running now is the current frame. There can be only one.
e [f the function calls a new frame, then a new frame is created and runs.
e Picture a stack of frames. Only the top frame is active and visible.

e The bottom of the stack is the mai n() function or the top of the file
called.

An example, with 402 frames.

Int main (void){
person the population[400]; //(this won’t actually work)
t he _popul ati on = produce people("data file");
for (i=0; 1<400; i++)
print "the hw of person ". 1 . " 1s ". get_hw(the_pc
return O;



Functions
call-by-value v call-by-reference

One of the key differences between languages.

e Call-by-value: In most languages, when a frame is built, a copy of the
input variables are sent. C, Ct 71, Matlab, R, Perl &c.

e Call-by-reference: Send in the variable itself, to be modified or de-
stroyed inside the function. Always in Java,; others use pointers. [Ex-
cept R, which just can't.]



Scope
The other key difference between languages.

scope of a variable: The frames which can see (a copy of) the variable.
Options:

e global: evey frame gets it.

e |ocal: functions see only var.s delcared inside the function or explicity
passed via reference.

e file-based: variables are global only within the text file they’re declared
In. Use multiple text files to divide scope.

e Object-based: next slide.



Scope
Objects

An object is a structure with function elements (aka methods). Call func-
tions as you would other elements: with a dot. per son. hwr () .



Scope
Objects

An object is a structure with function elements (aka methods). Call func-
tions as you would other elements: with a dot. per son. hwr () .

This engenders new scope options:

e public: if per son is in scope, then so are its public elements (via the
dot).

e private: scope is limited to functions which are part of the object.



Scope
The importance of good scope

The rule: keep all variables’ scope as small as possible.
e Fewer moving parts in every frame = easier debugging.

e Allows overloading: let person have a years variable and a
person. age() function and let dog have a dog.years and a
dog. age() function too.

e Allows encapsulation.



Encapsulation
Or, modular programming

e File-based scope

— Each file is a module entire unto itself. Public variables are put into
an accompanying header file.

— #i ncl ude fil e. h to call the functions or use the structures de-
clared therein.



Encapsulation
Or, modular programming

e File-based scope

— Each file is a module entire unto itself. Public variables are put into
an accompanying header file.

— #i ncl ude fil e. h to call the functions or use the structures de-
clared therein.
e Object-based scope

— The declaration of the object structure explicitly lists the pub-
lic/private components.

— Usually, each object is defined in a separate file anyway, which is
#i ncl uded.



Encapsulation
Inheritance

e Files may #i ncl ude other files, which in turn #i ncl ude others, &c.

e Objects may inherit from other objects, e.g., Players are a type of Cell-

Occupant:
public class Pl ayer extends Cell Occupant



Encapsulation
Inheritance

e Files may #i ncl ude other files, which in turn #i ncl ude others, &c.

e Objects may inherit from other objects, e.g., Players are a type of Cell-

Occupant:
public class Pl ayer extends Cell Occupant

Assembling a program from parts
How to write a program:

e find the modules (files or objects) which embody the strutures and
functions you are interested in.

e Call the functions in your own program.



Encapsulation
Inheritance

e Files may #i ncl ude other files, which in turn #i ncl ude others, &c.

e Objects may inherit from other objects, e.g., Players are a type of Cell-
Occupant:
public class Pl ayer extends Cell Occupant

Assembling a program from parts
How to write a program:

e find the modules (files or objects) which embody the strutures and
functions you are interested in.

e Call the functions in your own program.

So what's the difference between a program and a package?

The program includes a mai n( ) function (or other code for immediate eval-
uation).



Compilation and/or execution

A two step process:
e Compilation: convert your text into machine-language instructions.
Produces an illegible file.
— C:anobjectfile,fil e. o.
— In Java: a class file, fi | e. cl ass.

— Interpreted languages skip this step, and do it real-time.

e linking

— Find all of the modules you called, and put them together into one
file.

— Either explicitly list them, or set a path to search.



Compilation example

#! [ usr/ bi n/ bash
ARQOOT=/ hone/ bkl enens/ Ascape
CCROOT=sr c/ edu/ br ook/ currencycrisis

gcj -C -d $AROOT/ i b/ --classpat h=8AROOT/ ascapecore.jar:\
$ARCOT/ | i b/ edu/ br ook/ ascape/ nodel / :\

$ARCOT/ | i b/ : $AROOT/ col | ecti ons. zi p: \

$ARCOT/ QrJava. zi p: $AROOT/ j cchart 362J.j ar \

$AROOT/ $CCROOT/ Cur rencyMbdel . j ava $AROOT/ $CCROOT/ Bank. j ava \
$AROOT/ $CCROAT/ | nvest or . j ava $AROOT/ $CCROOAT/ Par anet er Reader . j ava |\
$AROOT/ $CCROOT/ Mat ri xOper at or . j ava $AROOT/ $CCROOT/ Bond. j ava \

$AROOT/ $CCROOT/ Mar ket Maker . j ava



execution example

Java links real-time, so you need to give it a class list when you run the
program:

set ARQOOT=c:\ cygw n\ hone\ bkl enens\ Ascape

set JAVAEXE=c:\pfil es\java\bin\java

% AVAEXE% - cp YAROOT% | i b\ ; %AROCOT% ascapecore. jar;\
YAROOT% col | ecti ons. zi p; YAROCOT% j cchart 362j . j ar; \
YAROOT% QTj ava. zi p edu. brook. ascape. nodel . Scape \
edu. brook. currencycri sis. Currencyhbdel



Part Il: Agent-based modelling



Complexity and emergence
The Mandelbrot set

e xrg=20
oI = 22 +
n+1 — Tn <

e If x,, converges, n — oo, then z € Mandelbrot set.



Complexity and emergence
The Mandelbrot set

e xrg=20
e — g2
n+1 — In + z
e If x,, converges, n — oo, then z € Mandelbrot set.

The only way to determine whether z € set is to do the darn calcualtions.
Therefore, the set is:

e Deterministic

e Unpredictable



Agent-based modeling
e Specify simple rules for the micro-level behavior of the agents.
e Let them interact.

e Observe what the system converges to.



Agent-based modeling
e Specify simple rules for the micro-level behavior of the agents.
e Let them interact.
e Observe what the system converges to.
Again the setup is:
e Deterministic

e Unpredictable



Existential issues
Or, Why?

e Find parsimonious explanations for complex behaviors.



Existential issues
Or, Why?

e Find parsimonious explanations for complex behaviors.

e Replace models which make macro assumptions and get macro out-
puts with micro assumptions and macro outputs.



When to use an A.B.M. instead of an equation-based model

e When the game is iterated and period t + 1 depends heavily on period
t (like the Mandelbrot set).



When to use an A.B.M. instead of an equation-based model

e When the game is iterated and period t + 1 depends heavily on period
t (like the Mandelbrot set).

e When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)



When to use an A.B.M. instead of an equation-based model

e When the game is iterated and period t + 1 depends heavily on period
t (like the Mandelbrot set).

e When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

e When functional forms are expected to be nonlinear (e.g., anything
with a tipping point)



When to use an A.B.M. instead of an equation-based model

When the game is iterated and period ¢t 4 1 depends heavily on period
t (like the Mandelbrot set).

When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

When functional forms are expected to be nonlinear (e.g., anything
with a tipping point)

When you have no idea what the macro functional forms are



When to use an A.B.M. instead of an equation-based model

When the game is iterated and period ¢t 4 1 depends heavily on period
t (like the Mandelbrot set).

When there are multiple equilibria, and the theory says nothing about
which will prevail (e.g., anything with a tipping point)

When functional forms are expected to be nonlinear (e.g., anything
with a tipping point)

When you have no idea what the macro functional forms are

When selling to non-mathematicians



The Agents
e Many of them
e generally dumb.
— limited processing ability
— limited information

— limited choices (e.g., location, network, buy/sell)



the game of life
e A2-Dgrid
e if an empty space has 3 neighbors, then there’s a birth
e if afilled space has <2 neighbors or >3 neighbors, there’s a death.

We can do this with a space and agents on the space.



The agent class

public class agent{
public: location position;
I nt age, |ast _update, is_dead;

private: int nei ghbors;

public agent(int |ocation){
age
| s_dead
| ast _updat e
| ocati on

O;
posi tion;

}

voi d update(int t){
I f (t !=last _update){
| ast _update= t;
nei ghbors = position.count nei ghbors();
| f (neighbors > 3 || neighbors < 2)
| s _dead = 1;



The location class

public class | ocation{
public: int is alive, prior_state, |ast _update;

private: |ocation neighbor |ist[8];
| nt row, col, |iving_nei ghbors;
agent occupant ;

public location (int row, int col){
set _up_nei ghbor list(row, col);
s _alive = 0;
prior_state = O;

}

Continued.



The location class

public update(int t){

i f (t !'=last_update)
| ast _update = t;
prior_state = is_alive;
| i vi ng_nei ghbors = count nei ghbors();

if (is_alive){
occupant . update(t);
| f (occupant.is_dead)
is alive = 0;
} else {
| f (nei ghbors ==2)
Is alive ++;
occupant = new agent(this);

}
}
public int ami _alive(int t){
i f (t == last_update)
return prior_state;
el se
return is_alive;
}



The program
The agents (and the space) do all the work = the main loop just asks the
agents to keep updating.

space.initialize()
for (t=0; t<limt; t++){
foreach(| ocati on)
| ocati on. updat e()
do_accounting();

}



