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The storyline:

• We think in stories.

• We want to bring them to data, fit and evaluate them.

• What would a tool set to formalize narrative stories look like?

The implementation:

• 10 mins: the state of social science modeling

• 5 mins: an implementation sidebar

• 10 mins: building model objects

• 5 mins: transformations of model objects

• 20 mins: increasingly elaborate examples
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Formalizing the story (Probability)

The storyline:
Start with $100. Every day, it grows or shrinks by some percent.
What does the total look like after ten days?

The formalized model:

• outcome = 100 · k1 · k2 · · · · · k10
• log(100 · k1 · · · · · k10) = log(100) + log(k1) + · · ·+ log(k10)

• Assume ks are independent and identically distributed

• Apply the Central Limit Theorem: log(out) is Normally
distributed

• ⇒ The outcome has a Lognormal(µ, σ) distribution.
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Formalizing the story (Physics)

The storyline:
There are particles in a box. They bump into each other. How
much heat does the box emit?

The formalized model:
Assume N particles in a constrained subset of R3. They collide
according to Newton’s laws.
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Formalizing the story (Economics)

The storyline:

• Capital (human, social, physical) accumulates with age;
capital affects income.

• Gender affects income.

The formalized model (we’ll get to gender in a second):

ln(I ) = β0 + Aβ1 + ε (1)
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Why do women earn less?

Bosses are jerks:

ln(I ) = β0 + Aβ1 + Sβ2 + ε (2)

They accumulate capital more slowly:

ln(I ) = β0 + Aβ1 + Sβ2 + ε (2)

There’s a risk that they’ll produce babies:

ln(I ) = β0 + Aβ1 + Sβ2 + ε (2)
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Regression technology advances
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The regression model is not no structure

• If I’m k% older, expected log income is β1 · k% more, ∀k .

• Age and sex are structurally symmetric.
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100 working papers

WB CES

papers with regressions only 25 33
papers with any other model 7 4
papers w/no model fitting 18 13

WB = World Bank

CES = Census Center for Economic Studies
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Social science are the harder sciences; why are our models so
much simpler?
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Why do we do use proxy models we don’t believe?

• I do this.

• You can run a regression in under five minutes, and that may
be good enough.

• In the 1970s, it was the peak of computing power ⇒
well-researched models.

• Nobody ever got fired for running a linear regression.
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Other alternatives

• structural equation modeling

• Bayesian hierarchies

• graphical models

• causal networks
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Sidebar: implementation
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Sidebar: Apophenia

A library of stats functions.

• Pretty stable at this point.

• Open source.

• In process to be Debian, Fedora packages.
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Sidebar: A sample program with Apophenia

#include <apop.h>

int main( ) {

apop_data *data = apop_text_to_data("data.txt",

.has_row_names=’y’);

apop_model *est = apop_estimate(data, apop_ols);

apop_model_show(est);

}
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Side-sidebar: An essay on programming language choice

It’s the vocabulary.
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Side-sidebar: good enough for me
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Side-sidebar: not good enough for you?

I still ♥ you. Implement the algebraic system in your favorite
platform.

Please.
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The algebraic system
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The idea

• There is a space of models, M.

• Every transformation maps from M→M, or (M,M)→M.
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What is a model?

• At its core, a likelihood: (D,P)→ R+

I D = a data space
I P = a parameter space

I Regression tree: P = the space of bifurcations.

I “Nonparametric” model: P has infinite/indeterminate
dimension.

• In practice, we want more:
I a method for estimating parameters from data

I a method for making random draws

I a method for testing claims
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Back to that sample code

apop_model *est1 = apop_estimate(data, apop_ols);

apop_model *est2 = apop_estimate(data, apop_logit);

• OLS’s estimation method is well known [(X ′X )−1X ′Y ]

• Logit doesn’t have an estimate method. But given a
likelihood, I can estimate via MLE.
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Given part of a model...

. . . we can build the whole thing.

• Likelihood → Parameter estimation: MLE

• Likelihood → RNG: MCMC, ARMS

• RNG → Likelihood: build an empirical PMF

• RNG → CDF: Monte Carlo integration

• CDF → Likelihood: Numeric deltas
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Now functions don’t have to care what’s inside the black box.

y ∼

x ∼

z ∼ Update(prior=y, likelihood=x)
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Don’t be oversold

Here’s a 49-page paper: tinyurl.com/ModelSet

Apophenia is ∼15,000 nontrivial lines of code.
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Transformations
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Truncation

• Maps a model to a truncated model; cut off everything less
than x .

I D: same as before, but truncated

I P: same as before

I Likelihood: drop all weight less than x ; rescale

I RNG: if draw < x , try again

I CDF: Redistribute weight under cutoff

I Estimation: You have a likelihood. Go fish.

• It’s still a model ∈M.
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Data-parameter composition

AKA Bayesian updating: P(β|D) ∝ P(D|β)P(β).

• Start with Mp, ML, ρ ∈ Pp, D ∈ DL.

• Draw p from the RNG for Mp given params ρ [∝ P(β)].

• Evaluate PL(D, p) using the likelihood from ML [P(D|β)].

• Write this as DPcompose(Mp,ML) ∈M.

• Likelihood of (D, ρ) depends on both model likelihoods.
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Story problems
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A waiting narrative

• People have different mean wait times.

• Their mean waiting time is a sum of iid glitches. What is the
distribution of waiting times?

I For now, say those glitches generate a N (3, 1)

• But those with negative mean wait times are already out of
the population
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Encode the narrative

Mwait ≡ DPcompose (Trunc (N (3, 1)) , Exp)

//The constraint function.

double over_zero(apop_data *in, apop_model *m){

return apop_data_get(in) > 0;

}

apop_model *norm = apop_model_set_parameters(apop_normal, 3, 1);

apop_model *orm = apop_model_dconstrain(.base_model=norm,

.constraint=over_zero);

apop_model *posterior=apop_update(.data=wait_data,

.prior=orm,

.likelihood=apop_exponential);
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Estimating with data

Mwait ≡ DPcompose (Trunc (N (µ, σ)) , Exp)

apop_model *rm = apop_model_dconstrain(.base_model=apop_normal,

.constraint=over_zero);

apop_model *wait = apop_model_dpcompose(rm, apop_exponential);

apop_model *optimum = apop_estimate(data, wait);

apop_data *cov = apop_model_bootstrap_cov(data, wait);
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More models, more transformations

• MPMF

I Probability Mass Function

I PMF (0) ≡ a point mass at zero

• Jacobi: invertible coordinate transformation
I Box sides are MN ⇒ box volume is Jacobix3(MN )

• Mix
I Weighted sum of input models

• Cross
I Independent draws from input models. For example...
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The Ziggurat distribution

#define unif(a, b) apop_model_set_parameters(apop_uniform, a, b)

apop_model *zig = apop_model_stack(

apop_model_mixture(unif(3.0, 3.6), unif(2.5, 4.1), unif(2.0, 4.6)),

apop_model_mixture(unif(.6, .9), unif(0.5, 1.0), unif(0.3, 1.2))

);
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The dinner party

• Some try to be on time, but hit delays at λ/minute.

• Some are ‘fashionably late’: shoot for 30 minutes late, but are
imprecise.

• Nobody is early. If early, hang out at the Rite Aid until the
right time.
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Build it!

• First group:
MA = Jacobix/λ(MExp)

• Second group:

MB = Mix∗(Trunc(N (µ, σ)),PMF (0))

• Together: MC = Mixw (MA,MB)
I P = λ, µ, σ,w

I D = minutes late

• Priors
I λ : Trunc(N (µ1, σ1))

I µ : N (µ2, σ2)

I σ : Jacobi√x(Mχ2)

I w : Uniform(0, 1)
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The dinner party, built

M = DPCompose(

Cross(

Trunc(N (µ1, σ1)),

N (µ2, σ2),

Jacobi√x(Mχ2)

Uniform(0, 1)

),

Mixw (

Jacobi1/λ(MExp),

Mix(Trunc(N (µ, σ)),PMF (0))

)

)
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Probabilistic programming implementation sidebar II

• That was a single expression.

• Algebraic transformations are the core of “functional”
programming.

• Some statistics (e.g., monoids) are very amenable to this
treatment.

• How can we adapt the functional paradigm to describe
random processes?

I BLOG

I Church

I Venture

I HLearn for Haskell
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Estimating incomes
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Income, DC Public use micro sample (PUMS)

• Ages 0-14 are N/A, excluded

Klemens Estimating incomes 44/61



Linear regression
log10(I ) = 4.406 + 0.005A− 0.119S + ε

• P: Model self-reports all βs significantly 6= 0.

• D: AICc = 451
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Ways to improve this

Keep adding elements to the linear combination:

var β p-val

1 4.29 (0.00)
age 0.01 (0.000)
sex -0.10 (0.12)

citizen 0.005 (0.78)
hisp -0.002 (0.74)

lang@home -0.001 (0.007)
# autos 0.008 (0.86)

education 0.049 (0.000)
speak English 0.045 (0.41)
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Other ways to improve this
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A production model

• Agents have capital (human, social, physical)
I Capital accumulates or decays each period

Wt+1 = Wtd

I d is iid

I Run for ten periods.

• Each year, agents use the capital they have to get an income
I Capital → income

ln(I ) = W β

•
ln(I ) ∼ Jacobixβ (MN (µ, σ))

I D: income data (> 0)

I P = [µ, σ, β]
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Production model I: how’d we do?

• P: AIC= 1114 (vs. OLS: 451)
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The bad luck model

• As before, capital accumulates or decays each period

Wt+1 = Wtd

• d ∼ N (µ, σ)

• Run for 10 periods.

There is a cutoff k, below which we drop wealth to zero.

• D: income data (≥ 0)

• P: µ, σ, k
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Production model II: how’d we do?

P : µ = 3.03± .002σ = 1.22± .0024k = 1.12± .007
D : AIC0 = 403 (versus 451)
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It’s not a complete model until there are priors

Add priors: apop_model_stack(ziggurat, ziggurat, ziggurat)
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It’s not a complete model until there are priors

Update using the model given data: apop_update(dc_data, ziggy, sim)
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Production model III: does age matter?

• Same setup as Production model II, but:

• Agents evolve for p·(age-24)+ (1− p)·10 periods.
I p = 0: everybody gets ten draws.

I p = 1: everybody gets (age-14) draws.
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Production model III: how’d age do?

P :µ = 3.06;σ = 0.93; k = 1.22; p = 0.036± .002
D : AIC0 = 436 (versus PM1=403; OLS=451)
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Why do women make less?

• Bosses are jerks
I The model: Subtract some amount from women’s income,

post capital-to-income transformation.

• They accumulate capital more slowly
I The model: men draw from one capital shock distribution;

women from another.

• There’s a risk that they’ll produce babies
I The model: add a glitch to the ABM that some women fall

out of the game for some months.
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Summary regarding the examples

• If your model doesn’t fit, don’t just throw more covariates in;
ask whether the structure could better fit the narrative.

• We can grow models incrementally. Start with no parameters,
add age, add sex, . . . .

I Simulations can have comprehensible structures; don’t have to
have 1,000 parameters

• There can be a smooth transition from closed-form to
open-form models.

• Evaluate all models equally:
I P: Put confidence intervals, priors on parameters.

I D: Compare model and actual distribution, measure
information loss.
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Conclusion
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Calls to action

• Please be discontent with the Social Science models we have
today.

I Please model the story, not its shadow.

• Please build tools that allow the formalization of structure.

• Please write transformations as M→M or (M,M)→M, so
we can develop models of arbitrary complexity.
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