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Abstract

I present a model of the simultaneous selection of goods or actions
which demonstrate increasing returns to scale. Prior models of such goods
universally describe people as basing their decisions upon the actions cho-
sen by previous actors; the outcome depends as much on the sequence
of actors as on the prior information decision makers have. Actors in
the model here act simultaneously, so they must decide what to do based
only on information about the distribution of tastes in the society. The
shape of this distribution (e.g., centered around zero, skewed upward, or
fat-tailed) predicts the number of people who will act in systematic ways.
The model of Brock and Durlauf [2001] is a special case of the model
described here.

1 Introduction

This paper presents a reduced-form model which describes situations in which
people gain more utility from a good or action if others consume the same
good or act in the same manner. It includes situations which different classes of
literature describe as conformity, network effects, herding, fashion, or contagion.
Specific examples include the consumption of operating systems, movies, or
music; or even the decision to revolt against the government.

Existing models of these situations are sequential models, where people ob-
serve others before deciding to act. This paper presents a simultaneous model,
and therefore arrives at results which differ in many ways from the extant liter-
ature.

Some preliminary notation will facilitate discussion. Let t be a real number
representing a person’s taste for an action if the person were not concerned
about others. A negative number would imply that one prefers not to act. Let
k be the percentage of people who are acting. Then a consumer’s utility from
acting will be V (t, k), a function which is monotonically increasing in both t
and k.

∗Thanks to Richard McKelvey and Matt Jackson for extensive commentary. Thanks also to
Kim Border, Peter Bossaerts, Peyton Young, Carla Van Besalaere, Daniel Ray Clendenning,
and Elizabeth Maggie Penn for critique and suggestions.
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1.1 Motivation

All but one of the results of this paper make no other assumptions about the
form of the value function V (t, k). On the one hand, that means that this paper
offers no explanations as to why people choose to behave like others. It is an
enthralling question, but is taken as an assumption to the model here, not a
result.

On the other hand, this paper is applicable in a wide variety of situations.
The information cascade model says that others’ behavior may reveal informa-
tion which raises the expected utility from selecting the same action; therefore
a person’s expected value from acting is a monotonically increasing function of
their own tastes and the percent of other people acting—thus fitting the form
V (t, k). Goods which have ‘network externalities’, such as computer operating
systems, have two components to their utility: a private utility and a benefit
from networking with others, which may be expressed as V (t, k). Goods tradi-
tionally thought of as fashion goods, such as music or clothing, clearly have a
private and a public component, and can be expressed using the same reduced
form.

1.2 Comparison with prior scholarship

1.2.1 The restaurant problem

The main contribution of this paper is to present a simultaneous model of belief
formation and action. The most common comparable model is that of sequential
‘information cascades’, as described by Banerjee [1992] or Bikhchandani et al.
[1992].

Since people act sequentially, the nth decision maker has n − 1 signals that
he may look to, meaning that he does not need to have well-developed priors.

There is almost no place in the herding model for comparing different prior
beliefs. The true value from the action is taken to be constant throughout
the society, although prior beliefs about t may differ. In the model here, each
person knows his or her own private value ti with certainty, but this differs
from person to person. Since tastes are heterogeneous, people need to have
prior beliefs about the distribution of tastes within the society. Let f(t) be
the probability density function (PDF) of tastes among the population. The
information cascade models have no place for f(t). In the model here, different
priors on the characteristics of f(t) (symmetric, skewed, fat-tailed) will affect
the final percentage of people who will act.

The herding model remains untested in the literature. Tests searching for
herding effects in various situations abound (e.g., Weinberg et al. [2001] on em-
ployment, Evans et al. [1992] on racial attitudes, Campbell [1980] on high school
dropout and pregnancy rates, Kennedy [2002] on prime-time television, Ander-
son and Holt [1997] in the lab, et cetera), but none of these tests are informed
by the models from the herding literature which they cite. The problem is not
with the empirical tests, it is with the theoretical model, which does not make
testable predictions beyond the basic claim that people herd. The model of this

2



paper makes specific, testable claims about herding based on publicly available
information and prior beliefs.

1.2.2 Brock and Durlauf’s model

Brock and Durlauf [2001] have a similar model, but assume that f(t) is a logistic
distribution and that the value function is linear (V (t, k) = t + nk). Besides
reducing the generality of their work, it also makes it impossible to make pre-
dictions based on the shape of the distribution. The results here go into detail
about outcomes given different assumptions about f(t).

Finally, Brock and Durlauf assume a cutoff-type equilibrium, while Lemma
3 will prove that cutoff equilibria can be derived from the other assumptions of
the model.

1.3 Highlights from the results

We are interested in what I call conviviality effects. Active conviviality is a
situation where an actor would not act if basing his decision entirely upon his
private preferences, but chooses to act given knowledge or expectations about
the behavior of his cohorts. Inactive conviviality is the opposite situation: an ac-
tor privately prefers to act, but refrains given information about others’ choices.
To the extent that conviviality effects are prevalent, demand will differ from the
familiar demand curve implied by purely private utility.

Given the assumptions here, only cutoff equilibria are possible. In other
words, if we order people by their private taste for a good, then only those
whose taste is above a certain cutoff will choose to act. In this case, only one
of active or inactive conviviality are possible, but the question remains which.
Depending on the prior information held by the actors, there may be multiple
equilibria demonstrating either effect. In this case, factors outside the model
will determine which outcome prevails.

If the distribution of tastes is sufficiently diffuse, then there will be a unique
equilibrium.

Finally, if we have some prior distribution of beliefs, then this will induce
some posterior distribution of equilibria. But the posterior distribution of equi-
libria will be more diffuse than that of the prior distribution of tastes. As the
desire to conform becomes more strong, the distribution of equilibrium outcomes
will be more and more fat-tailed, until moderate equilibria with few conviviality
effects will become impossible and only extreme equilibria will occur.

1.4 Outline

Section 2 defines the model. Section 3 defines a Nash equilibrium in this context.
Section 4 discusses equilibria given complete information.
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2 The model

Actors are faced with a binary action. For example: stand in line at the popular
restaurant or go straight in to the unpopular one, install either a DOS-based
operating system or a UNIX-based system, revolt or do not revolt, buy a good
or do not buy it. For the sake of consistent terminology, I will describe the
choice as being between ‘acting’ and ‘not acting’.

A countably infinite number of individuals will simultaneously choose to act
or not act. The decision is based on two factors. The first factor is the ex post
percentage1 of others acting, k ∈ [0, 1], which will be endogenously determined.
The second factor is the net individual utility to consumer i, denoted by a real
number ti. The distribution of t within the society depends on a parameter m,
which is discussed below. Given m, the distribution of tastes is described by a
PDF f(t|m) which has support (−∞,∞) for any given m.

2.1 Time line

The sequence of events is as follows:

1. Nature draws a fixed value µ for m, where m is distributed with PDF a(·);
after the draw, µ is common knowledge.

2. Individuals draw a private utility ti.

3. Person i now has enough information to calculate the expected utility from
acting and from not acting, and makes a decision accordingly.

4. All individuals act simultaneously.

5. Person i receives a payoff based on ti and the actual proportion of people
who acted.

2.2 Assumptions about the utility function

The total value from acting is a function V (ti, k) : R× [0, 1] → R, where ti ∈ R

is a level of tastes drawn from the distribution discussed above, and k ∈ [0, 1] is
the percentage of other actors, ex post, after everyone has decided whether to
act or not.

Assumption 1 The function V (t, k) is the same for all actors, is continuous at
all but a finite number of discontinuities, and is strictly monotonically increasing
in both t and k.

The utility from not acting is defined to be V (0, 1 − k).

1This is an approximation, since it is impossible to define a percentage of a countably
infinite number of people. More precisely, we will find that there exists a consistent estimate
of the likelihood that a randomly drawn individual will act, k ∈ [0, 1]. I will stick to the
description ‘percentage of actors’, however, because it makes more intuitive sense, and is
formally correct in the real world, where there are a large but finite number of actors.
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Notice that when not acting, people care about the percentage of others who
are not acting, just as they care about the percentage of others who act when
taking the action themselves.

We could have described the situation with three variables: t being the
private utility from acting, k being the percent of actors, and s the private
utility from not acting. But s would be redundant:

Lemma 1 For any function U(·, ·) which is monotonically increasing in both
arguments, there exists a function V (·, ·) which is also monotonically increasing
in both arguments, such that U(t, k) > U(s, 1 − k) iff V (t − s, k) > V (0, 1 − k).

[Proofs not given in the text can be found in the appendix, Section A.]
Normalizing the private utility from not acting to zero is therefore a conve-

nient and unrestrictive assumption.
Finally:

Assumption 2 There is some sufficiently low value tmin such that V (tmin, 1) <
V (0, 0).

This means that if if i draws ti < tmin then ti will not act, regardless of ex-
pectations about k. In other words, tastes do matter somewhat, so that even
if i knows that everyone will act with certainty (k = 1), he still will not act
if he finds doing so sufficiently distasteful. This assumes away some perverse
equilibria.

Having described the value from acting and not acting, the game is simply
a question of comparing the expected values of V : all consumers observe their
private utility ti, and simultaneously decide whether to consume or not, based
on whether EV (ti, k) > EV (0, 1− k) or vice versa.

3 Equilibria defined

This section defines pure strategy symmetric Nash equilibria in the context of
the model, along with the closely related expected demand function.

In the equilibria below, a person will be able to decide whether to act or
not based entirely upon his or her draw of ti. Let those t which prompt the
consumer to act be T A, and those that cause the consumer to not act as T N .
I will assume that consumers who are indifferent will not act; let the ts which
induce indifference be T ∗, meaning that T ∗ ⊆ T N .

The actors in the model are completely described by the parameter t, and the
set of pure-strategy actions available to them are to act or not act. Therefore,
a pure strategy symmetric Nash equilibrium (herein referred to as ‘an equilib-
rium’) is completely described by a set T A. For linguistic simplicity, I will often
say ‘T A is an equilibrium’ to mean ‘in equilibrium, only members of the set T A

act’.
A set T A is an equilibrium iff any individual who draws ti ∈ T A chooses to

act, given the prior information held by the individual and given that all other
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players are playing the strategy ‘act iff I draw tastes ti ∈ T A’; and no individual
who draws ti 6∈ T A acts, given the same information.

Conviviality This notation allows the following definitions: active convivial-
ity is when someone whose draw of ti is less than zero chooses to act. That is,
T A ∩ (−∞, 0) 6= {∅}. Inactive conviviality is when someone whose draw of ti is
greater than zero chooses not to act. That is, T N ∩ (0,∞) 6= {∅}.

The gist of these definitions is that if utility were purely a function of tastes,
then everyone with ti < 0 would not act while everyone who draws ti > 0
would. Situations of active or inactive conviviality are those where someone has
changed their behavior based on the behavior of others.

3.1 Cutoff equilibria and expected demand curves

A desirable refinement would be to have a cutoff equilibrium:

Definition 3 A cutoff equilibrium is where T A is of the form (T ∗,∞) for some
point T ∗.

Lemma 3 will prove that all equilibria are cutoff equilibria, given the infor-
mational assumptions of this paper.

Define k∗(ti) : R → [0, 1] as the percentage of people who would need to act
to make one who drew ti indifferent between action and inaction. Let K∗ be
the equilibrium percentage of actors. If ti has density f(t), then let F (t) be the
cumulative distribution function (CDF) of t. Also, note that if ti were the cutoff
in a cutoff equilibrium, and the tis are distributed ∼ F (·|m), then 1 − F (ti|m)
percent will act.

Corollary 2 The cutoffs for cutoff-type pure strategy Nash equilibria are at the
value(s) of ti for which k∗(ti) = 1 − F (ti). If k∗(ti) > 1 − F (ti) for all ti, then
K∗ = 1 is an equilibrium (where T A = ∅, meaning no one acts).

In other words, we need only find a person who would be indifferent if
they happened to be the cutoff. Such a person may consistently be a cutoff in
equilibrium, and a person may only be a cutoff in equilibrium if he is indifferent
given that he is the cutoff.

4 Equilibria found

First, we are guaranteed a cutoff equilibrium.

Lemma 3 Given that m = µ is known, all pure strategy Nash equilibria are
cutoff equilibria.

From here, complications ensue; some examples may be helpful.
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Figure 1: the ‘normal’ case

4.1 Example A: the normal case

Take f(·|m) = N (m, 1), and take the value function to be linear and separable:
V (t, k) = t + nk.

If n = 1, then we have the case in Figure 1: k∗(ti) is the straight line;
1 − F (ti|0) is the curve.2 The equation k∗(ti) = 1 − F (ti|m) is satisfied at the
crossing of these two curves, meaning that this is the location of any equilibria.
Clearly, there is only one crossing point, and therefore a unique equilibrium.

Comparative statics are simple in this case: if m rises from zero to a positive
value, the curve translates to the right, and therefore the cutoff falls. Since the
cutoff falls, more people act. In other words, if it is revealed that more people
like a good, then more people will consume.

4.2 Example B: multiple equilibria

The case n = 2, so V (t, k) = t + 2k, is much more interesting. Now consumers
are twice as interested in the percentage of actors than in the good itself, and
the result is as in Figure 2. There are three possible cutoffs, and the society

2What would it mean if k∗(ti) > 1? Then a person would need more than 100% of his
cohort to act before he is indifferent. In other words, he would never act. Since there can
never be a negative percentage of actors, if k∗(ti) < 0 then person i will always want to act.
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Figure 2: If people care enough about k, perverse equilibria appear.

agreeing on any one of them is a Nash equilibrium. One way to resolve this is
to make a pessimism assumption, that given a few equilibria, everyone agrees
on the one with the lowest number of people acting (and therefore the highest
value of t).

The comparative statics for the pessimist (or the optimist) case is very sim-
ple: as the mean of the distribution rises, T ∗ falls and more people act. There is
a jump in the value of the cutoff at a certain value (as the ‘S’ crosses the line).

Much more interesting is the ‘moderation’ case: if consumers agree upon the
middle of the three equilibria, then as µA increases, T ∗ also increases, meaning
that fewer people consume. People may coordinate on this middle equilibrium,
but the equilibrium is unstable: if people think the cutoff is perturbed to the
left of T ∗, this would only lead to a greater shift to the left, eventually reaching
the leftmost crossing point, and similarly with a shift to the right. Therefore the
equilibrium point can be thought of as the dividing line between points which
lead by tatônnement to a low T ∗ and points which lead to a high T ∗; since this is
increasing, the number of points which lead to high consumption rates increases
as the mean taste for the action or good increases, consistent with intuition.

General results These examples show that if the distribution of tastes is dif-
fuse enough or (equivalently) the desire for conformity is low enough, then there
will be only one equilibrium. The following results explain sufficient conditions
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for one equilibrium.

Proposition 4 The PDF f(·|m) may take any form, and the parameter m will
be known to have the value µ with certainty. If for any equilibrium point t = τ ,
f(t|µ) < −dk∗

dt
(t) for all t > τ , then there will be only one equilibrium for the

given µ.

Theorem 5 The PDF f(·|m) may take any form, and the parameter m will be
known to have the value µ with certainty. If f(t) < − dk∗

dt
(t′) for all t, t′, then

there will be only one equilibrium for the given value of µ.

The left-hand side of the inequality in this statement is the derivative of
the CDF, while the right-hand side is the derivative of k∗(t), so these state-
ments hold when the CDF is expanding more slowly than k∗(t) is contracting
[Notice that dk∗/dt is always negative]. In words, this means that the value
from conforming expands quickly relative to the most concentrated parts of the
distribution. If the PDF has low peaks, or if k∗(t) falls very quickly, then there
will be only one equilibrium. This is sufficient for a unique equilibrium, but not
necessary.

4.3 The distribution of cutoffs

Even though m was taken as fixed above, it may have been drawn from a dis-
tribution a(m) before being fixed and made common knowledge. For example,
the median of movie enjoyability may be observed to have distribution a(m).
When a new movie comes out, the median of its quality is drawn from a(m),
and reviewers reveal the value of m to the viewing public. The model is then
as above: m is a fixed, known scalar, and Theorem 5 showed that if certain
conditions hold, then T ∗(m) is a function producing only one equilibrium for
each fixed value of m.

Let T ∗(µ) be the function mapping values of µ to the equilibrium T ∗ that
they induce.

Given the original ex ante distribution of a(m), then, what is the ex ante
distribution of T ∗? The following theorem then says that under appropriate
conditions, the distribution of T ∗ is a fat-tailed one relative to a(m).

Theorem 6 The ex ante distribution of the median m is a(m), which can take
any form. After drawing µ from a(m), µ is known with certainty. Assume the
PDF f(x) is single-peaked, with a maximum value of f(x) = 1

2n
, and the value

function is linear: V (t, k) = nk + t. Let d(T ∗) be the ex ante distribution of T ∗

(before µ is known).
Given these assumptions, the ratio a(m)/d(T ∗(m)) is single-peaked with a

peak at the point where µ = T ∗(µ). That is, d(T ∗) is less concentrated toward
the center than a(m).

Given the assumptions about f(·) and V (t, k) the conditions of Theorem 5
now apply, so there will be only one cutoff for any given value of m, and T ∗(m)
is truly a function.
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Returning to the example, if movie quality is normally distributed, then
movie returns will be fat-tailed. De Vaney and Walls (Vaney and Walls [1996],
p 1512) studied movie returns and found exactly this: “The end-of-run or total
revenue distribution for motion pictures . . . never quite reaches log normality; it
has fatter tails than the log normal and mass points at the far right, where the
superstars are located.”

Continuing the example in the context of the theorem, a(m)/d(T ∗(m))
is single-peaked, so its inverse [d(T ∗(m))/a(m)] can be described as ‘single-
troughed’. Also, Theorem 8 below will show that T ∗(0) = 0, so this is where
the nadir of the trough will be located. These facts imply that the distribution
d(T ∗) must have a lower center and fatter tails than the Normal distribution.
That is, actual movie quality which is distributed log-normally leads to log
movie returns which have a leptokurtic distribution, as found by De Vaney and
Walls.

An example For further intuition on the meaning of Theorem 6, consider
the case where the distribution a(m) is the Uniform[−1, 1] distribution, and
where f(·|m) is a Normal(m, 1) distribution. Continue to assume that the value
function is linear: V (t, k) = nk + t. Then Equation 8 of the proof (page 15)
shows that the distribution of d(T ∗) is proportional to the ratio

1
2n

1
2n

− f(T ∗(m)|m)
.

The premises of Theorem 5 assure us that the denominator is always positive,
which would make this a continuous function of n for the range where these
premises hold. When the distribution f(t|m) is N (0, 1), the peak of the distri-
bution is at zero, where f(0|0) ≈ .4. If 1

2n
>> .4 [i.e., n << 1.25], this ratio as a

function of m is approximately constant. If 1
2n

is only a little larger than .4, the
ratio will be larger at larger values of |m| and dip to a minimum at m = 0. As
n gets larger, the trough gets deeper, until 1

2n
= .4, at which point the function

becomes discontinuous, multiple equilibria are possible, and only extreme values
of T ∗ will be stable equilibria.

4.4 Giffen goods

Fashion goods are often used as an example of Giffen goods, so it is worth
considering when Giffen goods would arise in the model here. It is easy to
modify the model to include prices: take the parameter m to be the negation
of the market price, so as the price rises, then the median of the consumers’
value for purchasing the good falls. For example, if the good were free, then the
taste for the action of purchasing the good may be distributed ∼ N (0, 1), but
if the good cost two dollars, then tastes for the action of purchasing the good
would be distributed ∼ N (−2, 1), with most people not wanting to consume the
good, while those who strongly preferred the good when it was free still gaining
positive utility from buying the good for $2.
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The question of drawing the demand curve them becomes: as the final price
µ increases, does the cutoff T ∗ rise or fall?

The setup above gave conditions where T ∗(m) is a one-to-one function. Re-
turning to the original interpretation where f(t|m) is increasing in m,

Proposition 7 Given the premises of Theorem 5, T ∗(µ) is a strictly decreasing
function.

This reverses if m represents prices, so f(t|m) is decreasing in m: as the fixed
price µ rises, the cutoff T ∗ rises, meaning that the percentage of consumers falls.
In other words, given the premises of Theorem 5, the demand curve always slopes
down.

The premises of Theorem 5 are not trivial, and all of them may be plausibly
dropped to describe a society where Giffen goods could exist. First, it is assumed
that either consumers are not too concerned with the behavior of others, or
that tastes are not too concentrated. Fashion goods are universally those where
people are concerned with emulating the behavior of others. Also, if there are
multiple equilibria, then a shift in prices can both cause a change in the location
of the equilibria and a change in which equilibrium the consumers coordinate
upon.

Second, it is assumed that the value of acting is monotonically increasing in
the percentage of other actors. But consider fashion good models such as Fri-
jters [1998], Pesendorfer [1995], or Bernheim [1994], based on goods as a signal
of status. Each of these models feature a utility function which is increasing in
the percentage of high-type consumers of a good, and is decreasing in the per-
centage of low-type consumers. Therefore the value of consuming may increase
or decrease as a function of the total number of consumers. The moral is not
that fashion goods can not be Giffen goods—there is evidence that such goods
do exist—but that any model of fashion goods with Giffen demand curves can
not be based on a homogenous society with full information and purely self-
interested actors.

4.5 Comparing posteriors

This section gives one more way in which the location of the cutoffs are related
to the distribution of tastes in the society.

Definition 4 A distribution f(·|µ) is symmetric iff f(d|µ) = f(−d|µ) ∀d.
A distribution f(·|µ) is upward-leaning iff f(d|µ) > f(−d|µ) for all d > 0.
A distribution f(·|µ) is downward-leaning iff f(d|µ) < f(−d|µ) for all d > 0.

For example, d ∼ N (2, 1) is an upward-leaning distribution, even though it
is symmetric around two.

Theorem 8 Given that m = µ is known.
(i: no conviviality) In the symmetric case, there is an equilibrium at T ∗ = 0,

meaning that there is neither active nor inactive conviviality.
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(ii: active conviviality) If the distribution is upward-leaning, then there is
an equilibrium at some point T ∗ < 0.

(iii: inactive conviviality) If the distribution is downward-leaning, then there
is an equilibrium at some point T ∗ > 0.

None of these cases preclude other equilibria existing elsewhere, as shown
by example B above, which was symmetric but had equilibria greater than,
less than, and equal to zero. However, in the case where there is only one
equilibrium, this demonstrates that the shape of the distribution matters in
determining the final level of consumption, where upward-leaning distributions
lead to more consumption; and the news of some ms are ‘better’ in the sense of
causing more people to act.

5 Conclusion

People gain utility from behaving like others in a multitude of situations. If all
individuals act simultaneously, however, the problem of predicting how others
will behave typically requires more information than any one person has.

In the case where tastes are distributed normally, adding the fact that people
like to behave like others does not change behavior from the entirely private
valuation case, where information is limited. Without additional information,
individuals are forced to assume that the average is like them, and the no-
change result follows. However, they may switch to a new equilibrium after
they know how many others actually are consuming. The new equilibrium will
be more likely to be extreme the more consumers care about how others act
(or equivalently, if the distribution of tastes has a tall peak); if consumers care
enough, then only extreme equilibria are possible.

A Appendix

Following are the proofs of the results presented in the text. Lemma 9 and
Lemma 10 are also stated, for use in subsequent proofs.

Lemma 9 Let T ∗

i be the equilibrium cutoff given mi. If m1 6= m2, then T ∗

m1 6=
T ∗

m2.

Proof:

Assume m1 > m2, and that T ∗

m1 = T ∗

m2. Since T ∗

m1
and T ∗

m2 are assumed to
be the same, let T ∗ signify both. One who drew ti = T ∗ would be indifferent
between action and inaction given either m1 or m2, meaning that

V (T ∗, 1 − F (T ∗|m1)) = V (0, F (T ∗|m1)) (1)

and

V (T ∗, 1 − F (T ∗|m2)) = V (0, F (T ∗|m2)) (2)
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But m1 > m2 and the monotonicity of V (t, k) immediately implies that 1 −
F (T ∗|m1) > 1 − F (T ∗|m2), so

V (T ∗, 1 − F (T ∗|m1)) > V (T ∗, 1 − F (T ∗|m2))

and

V (0, F (T ∗|m2)) > V (0, F (T ∗|m1))

meaning that only one of Equations 1 or 2 can be true. ♦

Lemma 10 Say two lines, defined by y = ax + ka and y = bx + kb, intersect
at the point (x1, y1). Then a one unit horizontal shift in the first line, to y =
a(x − 1) + ka leads to a horizontal shift in the point of intersection of a

b−a
, so

the x-coordinate of the new point of intersection is x1 + a
b−a

.

Proof: We can solve the initial system of equations to find that the point of
intersection for y = ax + ka and y = bx + kb is at the horizontal coordinate

x1 ≡
kb − ka

a − b
,

while the intersection for the lines y = a(x − 1) + ka and y = bx + kb is at the
horizontal coordinate

x2 ≡
kb − ka + a

a − b

= x1 +
a

a − b
, (3)

which was to be shown. ♦

Lemma 1 For any function U(·, ·) which is monotonically increasing in both
arguments, there exists a function V (·, ·) which is also monotonically increasing
in both arguments, such that U(t, k) > U(s, 1 − k) iff V (t − s, k) > V (0, 1 − k).

Proof: Let k∗

1(t, s) be the value of k such that U(t, k∗

1(t, s)) = U(s, 1 −
k∗

1(t, s)). Let φ(t, s) = 1−2k∗

1(t, s), and let V (τ, k) = τ +k. Substituting φ(t, s)
for τ , we see that a decision maker using V is indifferent when 1 − 2k∗

1(t, s) +
k = 1 − k, or when k = k∗

1(t, s). That is, a decision maker using V and the
transformed taste parameter τ = φ(t, s) is indifferent when he would have been
indifferent using the original utility function.

The reader may verify that the decision maker would also prefer acting or
not acting in the same manner using both functions.

Finally, notice that φ(t, s) is monotonically increasing in t and monotonically
decreasing in s, and V (τ, k) = τ + k is monotonically increasing in τ . ♦

Corollary 2 The cutoffs for cutoff-type pure strategy Nash equilibria are at the
value(s) of ti for which k∗(ti) = 1 − F (ti). If k∗(ti) > 1 − F (ti) for all ti, then
K∗ = 1 is an equilibrium (where T A = ∅, meaning no one acts).
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Proof: It is by definition necessary that the person at the cutoff be in-
different between acting and not acting, so at the cutoff, t∗(ti) = ti. This is
sufficient because everyone who draws a ti such that k∗(ti) > K∗ will want to
act and everyone who draws ti such that k∗(ti) < K∗ won’t, by FOSD and
monotonicity.

There will always be some value of K∗ ∈ (−∞,∞] which is an equilibrium.
There are only two possibilities: k∗(ti) = 1−F (ti) at some number of points, in
which case these are all potential equilibria; or k∗(ti) > 1 − F (ti) for all values
of ti, in which case setting K∗ > 1 is a consistent cutoff (since it will inspire no
one to act). The possibility that k∗(ti) < 1− F (ti) for all values of ti, in which
case everyone acts and K∗ < 0, is precluded by Assumption 2. ♦

Lemma 3 Given that m = µ is known, all pure strategy Nash equilibria are
cutoff equilibria.

Proof: The percentage of actors given a set of intervals T A (not necessarily
a cutoff) is know to be k(T A, µ). Now say that a person with a draw of t1 is
indifferent between action and inaction, i.e.:

V (t1, k(T A, µ)) = V (0, 1 − k(T A, µ)).

Then by the monotonicity of V (·, ·), it must be that for all people who draw
ti < t1,

V (ti, k(T A, µ)) < V (t1, k(T A, µ)) = V (0, 1 − k(T A, µ)),

so they therefore prefer not acting over acting. For all people who draw tj > t1,

V (tj , k(T A, µ)) > V (t1, k(T A, µ)) = V (0, 1− k(T A, µ)),

so they prefer to act. Therefore t1 is a cutoff, and T A must be (ti,∞).
If the cutoff is t∗(ti) = ∞, this is defined to mean that for all ti, V (ti, k(T A, µ)) <

V (0, 1− k(T A, µ)). ♦

Proposition 4 The PDF f(·|m) may take any form, and the parameter m will
be known to have the value µ with certainty. If for any equilibrium point t = τ ,
f(t|µ) < −dk∗

dt
(t) for all t > τ , then there will be only one equilibrium for the

given µ.

Proof: Consider a point τ ′ > τ . Given the conditions here, we are guar-
anteed that

−

∫ τ ′

τ

f(t|µ)dt >

∫ τ ′

τ

dk∗

dt
(t)dt. (4)

At τ , 1 − F (τ |µ) = k∗(τ), or

1 −

∫ τ

−∞

f(t|µ)dt =

∫ τ

−∞

dk∗

dt
(t)dt. (5)

The sum of Inequality 4 and Equation 5 gives:

1 −

[

∫ τ

−∞

f(t|µ)dt +

∫ τ ′

τ

f(t|µ)dt

]

>

∫ τ

−∞

dk∗

dt
(t)dt +

∫ τ ′

τ

dk∗

dt
(t)dt, (6)
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or more succinctly, 1−F (τ ′|µ) > k∗(τ ′). Therefore, given the assumptions here,
no point τ ′ > τ can not be an equilibrium.

♦

Theorem 5 The PDF f(·|m) may take any form, and the parameter m will be
known to have the value µ with certainty. If f(t) < − dk∗

dt
(t′) for all t, t′, then

there will be only one equilibrium for the given value of µ.

Proof: Given the condition here, the conditions of Proposition 4 will hold
for any draw of µ. ♦

Theorem 6 The ex ante distribution of the median m is a(m), which can take
any form. After drawing µ from a(m), µ is known with certainty. Assume the
PDF f(x) is single-peaked, with a maximum value of f(x) = 1

2n
, and the value

function is linear: V (t, k) = nk + t. Let d(T ∗) be the ex ante distribution of T ∗

(before µ is known).
Given these assumptions, the ratio a(m)/d(T ∗(m)) is single-peaked with a

peak at the point where µ = T ∗(µ). That is, d(T ∗) is less concentrated toward
the center than a(m).

Proof: The transformation from the PDF a(m) to the PDF d(·) is a simple
coordinate transformation:

d(T ) = a(T ∗−1(T ))
dT ∗−1

dm
(T )

or
a(T ∗−1(T ))

d(T )
=

dT ∗

dm
(m) (7)

A change in m is best envisioned using Figure 2 (page 8): a one-unit change
in m translates the curve one unit to the left; dT∗

dm
is then how far to the left

the intercept between the line and the curve moves. The slope of one minus the
CDF is −f(T ∗(m)|m), and the slope of the function k∗(m) is − 1

2n
. Plugging

these slopes into Equation 3 from Lemma 10 (page 13), we get:

dT ∗

dm
(m) =

1
2n

1
2n

− f(T ∗(m)|m)
. (8)

The premise of Theorem 5 guarantees that the denominator is always positive,
meaning that a positive shift in m always leads to a finite, positive shift in T ∗.

Equation 7 says that Equation 8 gives us the ratio a(m)
d(T∗(m)) which the

Theorem describes. Since f(·) is assumed to be a single-peaked distribution,
f(T ∗(m)|m) is largest where T ∗(m) = m, and is monotonically decreasing as m
diverges from that value in either direction; the left-hand side of Equation 8—
and therefore the left-hand side of Equation 7—is also largest where T ∗(m) = m
and is monotonically decreasing as m diverges from that point. ♦

Proposition 7 Given the premises of Theorem 5, T ∗(µ) is a strictly decreasing
function.
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Proof: Let µ be the value of m which induces an equilibrium at τ , and
let τ ′ be any value of t greater than τ . Recall Equation 6 from the proof of
Theorem 5:

1 −

∫ τ ′

−∞

f(t|µ)dt >

∫ τ ′

−∞

dk∗(t)

dt
dt, (9)

where µ is the median which leads to an equilibrium at T ∗ = τ and τ ′ > τ .
Notice that the right-hand side is not a function of µ, while the left-hand side is
a decreasing function of µ. Therefore, if the two sides of Inequality 9 were to be
equal, they would be for some value µ′ > µ, meaning that the equilibrium value
τ ′ > τ can only occur given a median µ′ > µ. In other words, the mapping
from m to T ∗ is an increasing function; along with the fact from Lemma 9
(page 12) that T ∗(m) is one-to-one, this means that its inverse T ∗(m) is itself
an increasing function. ♦

Theorem 8 Given that m = µ is known.
(i: no conviviality) In the symmetric case, there is an equilibrium at T ∗ = 0,

meaning that there is neither active nor inactive conviviality.
(ii: active conviviality) If the distribution is upward-leaning, then there is

an equilibrium at some point T ∗ < 0.
(iii: inactive conviviality) If the distribution is downward-leaning, then there

is an equilibrium at some point T ∗ > 0.

Proof: Recall that t∗(0) is the point at which one who drew ti = 0 would
be indifferent if t∗(t0) were the cutoff. It is the point where

V (0,

∫

∞

t∗(0)

f(x|m)dx) = V (0, 1 −

∫

∞

t∗(0)

f(x|m)dx)

or
∫

∞

t∗(0)

f(x|m)dx =

∫ t∗(0)

−∞

f(x|m)dx

In the symmetric case, where f(x|m) = f(−x|m), this is clearly true at t∗(0) =
0, and therefore T ∗ = 0 does indeed describe a Bayesian Nash equilibrium.

In the case where f(x|m) > f(−x|m), then the point which solves the above
equation must satisfy t∗(0) > 0. By Assumption 2, there is some value of t, t∞,
such that the associated cutoff is t∗(t∞) = −∞. Since t∗(ti) is a continuous,
monotonic function of ti, we know that t∞ < 0, and that there is some point
te ∈ (t∞, 0) such that te = t∗(te).

In the case where f(x|m) < f(−x|m), then t∗(0) < 0. By continuity, there
is some range such that t∗(ti) < ti for all ti ∈ (0, te). If this range has an upper
bound, then at that bound, te = t∗(te); if it has no upper bound, then T ∗ = ∞
is an equilibrium. ♦
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