
Abstract

It has been shown that if two probability distributions satisfy the
monotone likelihood ratio property (MLRP), and are independently up-
dated using common public information and traditional Bayesian updat-
ing, then the resulting two posterior distributions will also satisfy the
MLRP. I discuss this result and extend it by characterizing the full set of
updating operations which preserve the MLRP in this manner, of which
Bayesian updating is an element. I also find the set of updating opera-
tions which preserve first order stochastic dominance (FOSD). The only
operator which preserves both the MLRP and FOSD is that which ignores
all new information.

JEL Classifications: D81, D83.
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1 Introduction

First-order stochastic dominance (FOSD) is a useful property for a set of prob-
ability distributions to have. A lottery whose distribution FOSDs that of an-
other lottery can be said to be ‘better’ or ‘more optimistic’,1 in the sense that
the expected utility given the the dominant lottery is higher than that of the
dominated lottery. This statement assumes that a higher payoff is better, but
assumes nothing about risk preferences, returns to scale, or anything else about
the form of utility functions. See for example Milgrom [1981].

This result is directly used in Milgrom and Weber [1982] and a broad swatch
of the auction theory literature based thereon. In the realm of social choice
theory, Feddersen and Pesendorfer [1997] rely on the MLRP to ensure that
beliefs are ordered in their work on information revelation through voting.

For some applications, FOSD can be used as a sanity check: the distribution
of a stock’s expected ask price should always FOSD the distribution of the
expected bid, and as new information comes in, the updated ask distribution
should still FOSD the updated bid’s distribution. In other applications, it is
a useful assumption: one bidder may have a higher expected value for a good
than another, which we can model by saying that the first bidder’s distribution
of the good’s expected value FOSDs that of the second.

What sort of information from the auctioneer would or would not affect this
ordering?

If the prior distributions satisfy the monotone likelihood ratio property (the
MLRP, defined below), then the posterior distributions after Bayesian updating
with common information will also satisfy the MLRP, regardless of what com-
mon information is used to update. Since any pair of distributions which satisfy

∗Thanks to Kim Border, Peter Bossaerts, Matt Jackson, Richard McKelvey, and Bob
Sherman.

1The phrase ‘f FOSDs g’ may be read as ‘f first-order stochastically dominates g’. The
clarity of the abbreviation more than makes up for any æsthetic shortcomings it may have.
Similarly, the reader may take ‘f MLRPs g’ to mean ‘f satisfies the monotone likelihood ratio
property with respect to g’.
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the MLRP also satisfy FOSD, MLRP priors guarantee Bayesian posteriors which
are ordered by FOSD.

This is the state of the literature. This result appears in a discrete form
in Whitt [1979], in Milgrom [1981], and in some of the papers that they cite.
Bikhchandani et al. [1992] do a similar thing with a simplified setup.

The debate over the use of Bayes’s rule is a long-running one, though some
authors brush it aside; to select a representative quote, Calvert [1985] claims that
“[...] there is nothing magical about Bayes’s rule that should cause us to believe,
in advance, that a different rule would qualitatively change our conclusions
about the rational use of [...] information.” Section 4 shows that there is
something magical about Bayes’s rule, and that other reasonable methods of
updating do not have the consistency property of preserving the MLRP for which
Bayes’s rule is frequently cited in the literature. If we believe that the MLRP
should be preserved, then we believe that Bayesian updating is the correct
method of aggregating information.

It is easy to give counterexamples to show that Bayesian updating does
not guarantee posteriors ordered by FOSD given arbitrary priors ordered by
FOSD—the priors need the more restrictive monotone likelihood ratio property.
Theorem 8 describes the full set of updating operations which will guarantee
FOSD posteriors given FOSD priors. This set of operators consists of those
which take linear weighted averages of their inputs, and conspicuously excludes
Bayesian updating from the set.

2 Preliminary notes

Say that there are two competing researchers, who both know the conditional
distribution f(x|t) (with x, t ∈ R), but have private probability density functions
for t, g1(t) and g2(t).2 Assume that all functions have strictly positive values
for all x ∈ R and t ∈ R (that is, they have full support).

Given a probability density function (PDF) gi(t) describing the parameter
t, Bayes’s rule tells us how to use f(x|t) to update to posterior distributions:3

posti(t|x) =
f(x|t)gi(t)∫

R f(x|τ)gi(τ)dτ
. (1)

Typically, t is a parameter such as a mean, and x is new data such as
experimental observation. Let x̃ be the observed values of x; after x̃ is observed,
it has a fixed value, so posti(t|x̃) is a function of only t.

2Compare with Milgrom’s ‘Good news and bad news’ setup, in which one person could
receive two different types of signals. The symmetry of Bayesian updating indicates that both
types of setup are identical save for the storyline.

3‘Bayesian updating’ means different things to different people. For example, Majumdar
[2002] and Whitt [1979] prefer a form which is applicable to a finite number of states of
the world. New information eliminates states of the world from consideration, and thus
changes the probabilities placed on the other states. Here, I use a continuous form, and new
information comes in the form of a likelihood function with full support.
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That said, questions of whether the various functions gi(t) and posti(t|x) are
ordered of course require some methods of ordering distributions.

2.1 Ways to order a family of distributions

Since this section gives general definitions, take p(t) to be any PDF, mapping
from values of t ∈ R to R+.

Often, we have a family of related PDFs. For example, each researcher may
have beliefs which differ slightly from the beliefs of other researchers. Let i ∈ R
be an index, and denote a member of the family of distributions as either pi(t)
or, equivalently, p(t|i). A family of PDFs is ordered when any two members
pi(t) and pj(t) are ordered.

MLRP, the monotone likelihood ratio property: if i > j,

p(t|i)
p(t|j)

is an increasing function of t; if i < j it is decreasing, and is constant (one)
if i = j. Notice that these are strict inequalities.

Having two functions p1(x) and p2(x) is equivalent to having one function
p′(x|i) where p′(x|1) = p1(x) and p′(x|2) = p2(x). Therefore, to say ‘g1(t)
MLRPs g2(t)’ means that g1(t)/g2(t) is an increasing function of t.

FOSD, first-order stochastic dominance: p1(t) FOSDs p2(t) iff for any con-
stant k: ∫ ∞

k

p1(t)dt >

∫ ∞

k

p2(t)dt. (2)

Alternatively, a family p(·|t) satisfies FOSD iff p(·|t1) FOSDs p(·|t2) for all
t1 > t2.

single-crossing: p1(t) > p2(t) for all t less than some point K, and p1(t) <
p2(t) for all t > K.

These terms allow the following definitions:

Definition 1 Consider PDFs f , g1, and g2, all of which have full support over
the reals. Then an updating operation preserves FOSD iff g1(t) FOSDs g2(t)
implies that post1(t|x) FOSDs post2(t|x) for all likelihood functions f(x|t) and
any fixed x.

Definition 2 Preserving the MLRP is similarly defined.
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3 Bayesian updating preserves the MLRP

As discussed above, FOSD provides an ideal method of ordering distributions.
But unfortunately, it is easy to construct examples which show that Bayesian
updating does not preserve FOSD. That is, for any two PDFs such that g1(t)
FOSDs g2(t), there exists a likelihood function f(x|t) such that post1(t|x) does
not FOSD post2(t|x)—in fact, it is easy to construct examples where post2(t|x)
FOSDs post1(t|x). This section shows how the problem can be surmounted
using the MLRP.

Diagrammatically, Figure 1 shows the trick used in the literature to ensure
that posteriors satisfy FOSD: MLRP priors imply MLRP posteriors, which in
turn imply FOSD posteriors.

Priors Posteriors

MLRP //

��

MLRPoo

��
single-crossing

��

single-crossing

��
FOSD FOSD

Figure 1: Relations to be proven in the sequel

3.1 Ordering posteriors with the MLRP

The validity of the arrows in Figure 1 are proven in the appendix, Section 6, via
Lemma 11 through Lemma 13. But the main result is that if priors g1(t) and
g2(t) are ordered via the MLRP, then the posteriors they induce will be ordered
via FOSD. Formally,

Theorem 1 MLRP priors (on t) ⇒ FOSD posteriors on t for any fixed x,
within the support of f(x|t). That is, g1(t) MLRPs g2(t) implies post1(t|x)
FOSDs post2(t|x) for any x.

[This and other proofs not given in the body of the text are in the appendix.]
Theorem 1 gives a detailed description of an oft-used technique which is

effectively the state of the art in the literature on auctions and mechanism
design. The key point of interest from an economic perspective is FOSD, since
it can be shown that if the probability distribution g1(x) FOSDS g2(x), and
U(x) is any monotonically increasing utility function, then, without any further
assumptions about utility, the expected utility given the first PDF is larger than
the expected utility given the second:

∫
U(x)g1(x)dx >

∫
U(x)g2(x)dx. But
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FOSD is not preserved under Bayesian updating, so the only way to preserve
the ordering of utility functions is via the MLRP. The following sections show
that if we assume Bayesian updating, then the MLRP is the only type of ordering
which is preserved; while if we are only interested in preserving FOSD, then we
should instead prefer an averaging-type operator.

4 General updating operations

Say that a decision maker would like to know the likelihood of x ∈ R, and
toward that end two different authorities each present her with a different PDF
for x, f(x) and g(x). The decision maker herself can only have one set of beliefs,
so she must amalgamate f(x) and g(x) into one posterior PDF. For example, it
may be reasonable for the decision maker to simply take the average of the two
densities:

post(x) =
f(x) + g(x)

2
. (3)

Now say that the second authority has two distributions to choose from, g1(t)
and g2(t). The same question as above can be asked: if g1(t) MLRPs g2(t), then
what sort of updating operations will preserve the MLRP? This section shows
that the result that the Bayesian updating operation preserves the MLRP can
be expanded to a class of updating operations which I dub ‘weighted Bayesian
rules’—but this class does not include many reasonable updating operations
such as the averaging operator above. We are guaranteed that if an updating
operation that is not in this class is used, then there is some information f(·)
which will destroy the order of the posteriors, using the MLRP ordering. Mean-
while, the averaging operator of Equation 3 is a member of the class of functions
which preserve FOSD, but which may destroy the MLRP ordering.

4.1 Definition of an updating operator

Let τ(x) be the true, unobservable PDF of x. Say that one source claims that
for x = 1, τ(1) = a, and another source claims τ(1) = b. The decision maker
must amalgamate these two data points into one belief, so let op(a, b) be the
updating operation, mapping R+ × R+ to R+.

The same may be done for any value of x: let a(x) be one source’s claims
about the true distribution of x, and let b(x) be the other’s. Then op(a(x), b(x))
defines an implicit function mapping x to R+. A few more caveats ensure that
this will lead to a valid output given valid PDFs as inputs.

Definition 3 An updating operator is any two-variable function op(a, b) : R+×
R+ → R+, where op(a, b) ≥ 0 for all a ≥ 0 and b ≥ 0; and if

∫∞
−∞ a(x)dx = 1

and
∫∞
−∞ b(x)dx = 1, then

∫∞
−∞ op(a(x), b(x))dx is finite.

I will restrict attention to operators which are continuous in both vari-
ables. It will also be occasionally useful to restrict attention to those updating
operators which are increasing in both arguments. That is, if α > β, then
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op(α, γ) > op(β, γ) and op(γ, α) > op(γ, β) for all γ. This is sensible because
if one source modifies its report from a(x1) = β to a(x1) = α, thus putting
more weight on x1, a listener should take that into account when aggregating
the information and put a little more weight on x1 as well.

Although the discussion to this point has been oriented toward symmetric
applications, the first and second inputs into the updating operation will have
different interpretations for many of the applications below. Further, symmetric
operators will be shown to have some additional implications over the general
specification of Definition 3, where op(a, b) may or may not equal op(b, a).

There is no reason why
∫∞
−∞ op(f(x), g(x))dx should be one, meaning that

the actual posterior requires normalization.

Definition 4 The posterior distribution given updating operator op(·, ·) and in-
puts f(·) and g(·) is

post(f(·), g(·), op(·, ·), x) =
op(f(x), g(x))∫∞

−∞ op(f(y), g(y))dy
,

which is guaranteed to integrate to one.
In this notation, Bayesian updating is equivalent to op(f(x|·), g(·)) = f(x|·)g(·),

for any fixed x, giving a posterior exactly as described in Equation 1. For ex-
ample, let x be an observable variable and t be a parameter of x such as the
mean. A Bayesian researcher would begin with prior beliefs that t has a PDF
g(t), that the data has distribution f(x|t). The researcher then runs an ex-
periment which provides a value of x, χ. At this point, the researcher applies
op(f(χ|t), g(t)) = f(χ|t)g(t) to arrive at a posterior post(t|χ), which is a func-
tion of t but not x.

Shafer [1976] describes how this is equivalent to Dempster’s rule within the
probability framework here.

For a posterior which averages the priors, op(f(·), g(·)) = f(·)+g(·), and the
posterior is

post(f(·), g(·), op(·, ·), x) =
f(x) + g(x)∫∞

−∞ f(y) + g(y)dy
=

f(x) + g(x)
2

.

Finally, notice that if k is any positive constant,

k · op(f(x), g(x))∫∞
−∞ k · op(f(y), g(y))dy

=
op(f(x), g(x))∫∞

−∞ op(f(y), g(y))dy
.

In other words, any statement below about the properties of op(f(·), g(·), x)
also applies to op′(f(·), g(·), x) = k ·op(f(·), g(·), x). Having made this note here,
I will state all results below ignoring the fact that the operators can trivially be
multiplied by any positive constant.
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4.2 Operators which preserve the MLRP

Recall from Definition 4 that the updating operator must be rescaled to be a
true PDF. However, the following statement tells us that we can simplify the
problem by ignoring the rescaling which converted the updating operator to a
posterior.

Proposition 2 The posterior distribution post(f, g1, op, x) MLRPs post(f, g2, op, x)
iff the function op(f(x), g1(x)) MLRPs the function op(f(x), g2(x)).

That said, we can consider arbitrary positive functions without regard to
whether they integrate to one. Then:

Lemma 3 A continuous operator preserves the MLRP iff it is of the form

op(a, b) = t(a) · bp,

with p > 0, and t(·) any transformation.

The fact that the first argument may undergo any transformation is not sur-
prising: an operator preserves the MLRP if op(f(x), g1(x)) MLRPs op(f(x), g2(x))
for any pair of gs which satisfy the MLRP and any density f(x). So naturally,
if op(·, ·) preserves the MLRP given f(x), it also preserves the MLRP given
t(f(x)).

More interesting would be to restrict ourselves to operators which preserve
the MLRP symmetrically: op(f, g1) MLRPs op(f, g2), and also op(g1, f) MLRPs
op(g2, f).

Theorem 4 A continuous operator preserves the MLRP symmetrically iff it is
of the form

op(a, b) = ap · bq,

with p, q > 0.

Proof: In this case, we have two conditions: op(a, b) = t(a)·bq and op(a, b) =
ap · t(b). Any operator which satisfies both of these conditions must take the
form op(a, b) = ap · bq. ♦

That is, the MLRP is symmetrically preserved in all cases only when decision
makers update based on a monomial operator. The Bayesian updating operator,
op(a, b) = a · b, is the special case where p = q = 1.

The exponents p and q allow the decision maker to place more or less weight
on the distributions f(·) and g(·). Say that g(x) is a single-peaked distribution;
the convex transformation of squaring would exacerbate the peak, reducing the
variance of the distribution. In the context of receiving information from an
advisor, this means that op(f, g, x) = f1(x)g2(x) places more weight on the
second advisor’s claim and puts more of the posterior density around the center
of that advisor’s distribution. In a similar manner, op(f, g, x) = f1/2(x)g1(x)
discounts the first advisor’s advice. At the extreme, op(f, g, x) = f0(x)g1(x) is
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a long way of writing op(f, g, x) = g(x), ignoring the input of the function f(·)
entirely. This justifies the use of the term ‘weighted Bayes’s rule’ to describe
this class of updating operators, where the weights are the exponents p and q.

But the set of weighted Bayes’s rules is a small subset within the class of
possible methods of updating, excluding such intuitive methods as averaging
and convolution. If the reader does not believe that preserving the MLRP is
essential, then he or she should take the discussion of Sections 2 and 3 with a
grain of salt, since they describe only characteristics of Bayesian updating and
slight variants thereof. But if the reader believes that the MLRP should be
preserved by new information, then the above shows that the reader must also
believe that people use Bayesian updating (possibly weighted) to assimilate new
information.

4.3 Operators which preserve single-crossing

Here is a characterization of the set of updating operators which lead to poste-
riors ordered by FOSD:

Proposition 5 Given any pair of priors g1 and g2 which satisfy single-crossing,
and any function f , and an updating operator op(f, g) which is monotonically
increasing in f and g, the operator op(·, ·) provides posteriors ordered by FOSD
iff the function is of the form

op(f, g) = t(f) + qg,

where t(·) is a transformation function of any form, and q is any positive con-
stant.

This also describes the set of updating operators which preserve single-
crossing:

Lemma 6 An updating operator op(f, g) which is monotonically increasing in
f and g preserves single-crossing iff the function is of the form

op(f, g) = t(f) + qg,

where t(·) is a transformation function of any form, and q is any positive con-
stant.

Notice that if g1(x) = g2(x), then t(f(x)) + qg1(x) = t(f(x)) + qg2(x),
meaning that the point at which the priors cross is also the point at which the
posteriors cross. That is, if decision makers use an updating operator which
preserves single-crossing, no new news can move the point of crossing.

4.4 Operators which preserve FOSD

The set of operators which preserve FOSD matches the set of operators which
preserve single-crossing.
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Theorem 7 Within the class of operators op(f, g) which are monotonically in-
creasing in both arguments, an operator preserves FOSD iff it is of the form
op(f, g) = t(f) + qg, where t(·) is a transformation function of any form and q
is a positive constant.

Thus, the only updating method which preserved first-order stochastic dom-
inance in all cases is that of taking the weighted mean of the two sets, perhaps
transforming the first before knowing the second. Bayesian updating is not in
this set.

As we did with the MLRP, it is worth considering the problem of symmet-
rically preserving FOSD as well.

Theorem 8 Within the class of operators op(f, g) which are monotonically in-
creasing in both arguments, an operator symmetrically preserves FOSD iff it is
of the form op(f, g) = pf + qg, where p and q are arbitrary positive weights.

Proof: We require both op(f, g) = t(f) + qg and op(f, g) = pf + t′(g).
The only operators which satisfy both of these conditions are those listed in the
theorem. ♦

4.5 Preserving both the MLRP and FOSD

Both the MLRP and FOSD are preserved in the case of only one updating
operator—the trivial operator where new information is ignored entirely.

Lemma 9 The only updating operator which preserves both the MLRP and
FOSD is:

op(f(·), g(·), x) = g(x).

Proof: This is the only operator which satisfies both Lemmas 3 and 7.♦
There is no function which symmetrically preserves both the MLRP and

FOSD. The definitions given here are strict, but can be weakened: the ratio in
the definition of MLRP must be increasing, which can be weakened to nonde-
creasing; and the comparison in the definition of FOSD may be weakened from
‘less than’ to ‘less than or equal to’. Then the class of updating operators which
symmetrically preserve both the weak MLRP and weak FOSD becomes a large
one:

op(f(·), g(·), x) = h(x),

where h(x) is any arbitrary PDF which depends on neither f(x) nor g(x).

5 Conclusion

This paper discussed the result that Bayesian updating preserves the monotone
likelihood ratio property. This means that if a pair of priors satisfy the MLRP,
and both are updated with the same likelihood function and the Bayesian up-
dating operation, then the two posteriors will also satisfy the MLRP.
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But (weighted) Bayesian updating is necessary and sufficient for all of the
above results. If a modeler believes that the MLRP is always preserved when
people update their priors, or that posterior medians should be ordered as dis-
cussed above, then the modeler must describe people as using Bayesian updat-
ing. If a modeler believes that people do not use Bayesian updating, then he
must also believe that the ordering among people’s beliefs can be destroyed by
certain pieces of new information.

Similarly, the class of averaging operators preserves first-order stochastic
dominance. A researcher who desires that FOSD be preserved must assume an
averaging operator, and a researcher who does not assume an averaging operator
must accept that the FOSD ordering will not always be preserved.

6 Appendix

This section gives proofs for those statements and theorems not proven above.
It also states and proves Lemma 11 through Lemma 13, represented by the
arrows in Figure 1, and presents Proposition 14 for use in later proofs.

6.1 Proof of Figure 1

Lemma 10 Let t ∈ R, and p1(t) and p2(t) be continuous PDFs. Define K to
be the set of ts such that p1(t)/p2(t) = 1. If p1(t) MLRPs p2(t), then K is a
single point. Also, p1(t)/p2(t) < 1 for all t < K and p1(t)/p2(t) > 1 for all
t > K. In other words, MLRP ⇒single-crossing.

Proof: If K = {∅}, then it must be that either p1(t) > p2(t) for all t or
p1(t) < p2(t) for all t. The first case implies that∫ ∞

−∞
p1(t)dt >

∫ ∞

−∞
p2(t)dt,

but since both integrals must equal one, this is a contradiction. Similarly for the
second (<) case. Therefore K 6= {∅}. [Note that this is true for all continuous
PDFs, without regard to the MLRP.]

If there are two points t1, t2 ∈ K, meaning p1(t1)/p2(t1) = p1(t2)/p2(t2),
then the MLRP is violated.

By the MLRP, if t < K, then p1(t)/p2(t) < p1(K)/p2(K); since p1(K)/p2(K) =
1, this means that p1(t)/p2(t) < 1. Similarly for t > K. Thus, p1(t) and p2(t)
satisfy single-crossing.♦

Lemma 11 If pi(t) is a family of single-crossing distributions then the family
satisfies FOSD.

Proof: Take K defined as in Lemma 10, and consider two members of the
family, p1(t) and p2(t). Then for any point k > K, p1(t) > p2(t) for all t > k,
so
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∫ ∞

k

p1(t)dt >

∫ ∞

k

p2(t)dt

and FOSD is demonstrated. Now considering k ≤ K,∫ k

−∞
p1(t)dt <

∫ k

−∞
p2(t)dt (4)

Since these are PDFs, they integrate to one, and so Inequality 4 is equivalent
to

1−
∫ ∞

k

p1(t)dt < 1−
∫ ∞

k

p2(t)dt

Subtracting one and negating both sides demonstrates FOSD again.♦

Lemma 12 Given x ∈ R and t ∈ R, and a functions f(x, t) with full support
over the ranges of x and t. Then if f(x, t) satisfies the MLRP with respect to t
[that is, f(x, 2) MLRPs f(x, 1)], then it also satisfies the MLRP with respect to
x [that is, f(2, t) MLRPs f(1, t)].

Proof: Let t1 > t2 and x1 > x2. We assume that

f(x1, t1)
f(x2, t1)

>
f(x1, t2)
f(x2, t2)

.

Cross multiplying gives
f(x1, t1)
f(x1, t2)

>
f(x2, t1)
f(x2, t2)

,

proving our result.♦

Lemma 13 Bayesian updating is done using a draw from x and the single dis-
tribution f(x|t). Then a distribution family gi(t) satisfies the MLRP ⇔ within
the support of f(x|t), the family of posterior distributions satisfies the MLRP
with respect to t.

Proof: This is proven in a more general setting by Proposition 2 and Lemma
3. ♦

Note also that by Lemma 12, statisfying the MLRP with respect to t is
equivalent to satisfying the MLRP with respect to x.

Theorem 1 MLRP priors (on t) ⇒ FOSD posteriors on t for any fixed x,
within the support of f(x|t). That is, g1(t) MLRPs g2(t) implies post1(t|x)
FOSDs post2(t|x) for any x.

Proof: MLRP priors on t ⇒ MLRP posteriors on t (by Lemma 13); MLRP
posteriors⇒ single-crossing posteriors (by Lemma 10); single-crossing posteriors
⇒ FOSD posteriors on t (by Lemma 11). ♦

12



6.2 A result used in later proofs

Proposition 14 Let op(f, g) be monotonically increasing in g, let f(x) be any
PDF, and let g1(x) and g2(x) be any pair of PDFs which satisfy single-crossing.
Then post(op, f, g1, x) FOSDs post(op, f, g2, x) for any such functions iff∫ ∞

−∞
op(f, g1, x)dx =

∫ ∞

−∞
op(f, g2, x)dx.

First, I will show that this equality condition is sufficient for the posteriors
to satisfy FOSD. Since op(f, g) is monotonically increasing in g, it preserves
single-crossing, meaning that op(f, g1) single-crosses op(f, g2).

Since
∫∞
−∞ op(f(x), g1(x))dx =

∫∞
−∞ op(f(x), g2(x))dx, this means that the

posteriors

op(f, g1)∫∞
−∞ op(f(x), g1(x))dx

and
op(f, g2)∫∞

−∞ op(f(x), g2(x))dx

also satisfy single-crossing, and therefore FOSD is satisfied (by Lemma 11).
Say that, contrary to the above premise, there exist three functions g1(·),

g2(·), and f(·) such that∫ ∞

−∞
op(f(x), g1(x))dx >

∫ ∞

−∞
op(f(x), g2(x))dx. (5)

FOSD is satisfied when∫∞
k

op(f(x), g1(x))dx∫∞
−∞ op(f(x), g1(x))dx

>

∫∞
k

op(f(x), g2(x))dx∫∞
−∞ op(f(x), g2(x))dx

,

which we can rewrite as∫∞
k

op(f(x), g1(x))dx∫∞
k

op(f(x), g2(x))dx
>

∫∞
−∞ op(f(x), g1(x))dx∫∞
−∞ op(f(x), g2(x))dx

≡ 1 + δ. (6)

If the premise of the theorem held, then δ would always equal zero. Assuming
Inequality 5 means that δ > 0, but is constant with respect to k, so if the ratio
of

∫∞
k

op(f(x), g1(x)) to
∫∞

k
op(f(x), g2(x)) approaches one for some sequence

of ks, then FOSD will not be not satisfied.
If it is not the case that this ratio approaches one, then we may easily

construct a set of distributions where it does. Recall that one of the conditions
on op(f(x), g1(x)) was that its integral over all x ∈ R be finite. For this to be
true, it must be that

∫∞
c

op(f(x), g1(x)) approaches zero as c approaches ∞.
Therefore, there is some c such that∫∞

c
op(f(x), g1(x))dx∫∞

−∞ op(f(x), g2(x))dx
<

δ

2
.
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Now define

g′1(x) =
{

g1(x) x < c
any y such that op(f(x), y) =

(
1 + δ

4

)
op(f(x), g2(x)) x ≥ c

.

That is, g′1(x) is the same as g1(x) for all x up to c, and then takes on
any value such that we are assured that op(f(x), g′1(x)) is slightly larger than
op(f(x), g2(x)) for all x ≥ c. Single-crossing is still satisfied, and any offending
discontinuity may be easily smoothed out.

Notice that∫∞
−∞ op(f(x), g1(x))dx∫∞
−∞ op(f(x), g2(x))dx

>

∫ c

−∞ op(f(x), g1(x))dx∫ c

−∞ op(f(x), g2(x))dx

> 1 +
δ

4
, (7)

since g′1(x) is at its smallest if it were zero above c, and c was defined so that
Inequality 7 is true.

We now have ∫∞
c

op(f(x), g′1(x))dx∫∞
c

op(f(x), g2(x))dx
< 1 +

δ

4
,

while ∫∞
−∞ op(f(x), g′1(x))dx∫∞
−∞ op(f(x), g2(x))dx

= 1 +
δ

2
.

Inequality 6 is not satisfied for g′1(x), g2(x), and k = c, meaning that FOSD is
not satisfied for these functions.

If the reverse of Inequality 5 is true, then there are two ways we can construct
single-crossing functions which do not lead to FOSD posteriors. One is to repeat
the above procedure, instead modifying the left-hand tail of g2(x). A neater way
is to let fm(x) = f(−x), gm

1 (x) = g2(−x), and gm
2 (x) = g1(−x). By taking the

mirror image in this way, we still have gm
1 (x) single-crossing gm

2 (x), and∫ ∞

−∞
op(fm(x), gm

1 (x))dx =
∫ ∞

−∞
op(f(x), g2(x))dx

and∫ ∞

−∞
op(fm(x), gm

2 (x))dx =
∫ ∞

−∞
op(f(x), g1(x))dx.

meaning that either Inequality 5 is true or if it is false, then∫ ∞

−∞
op(fm(x), gm

1 (x))dx >

∫ ∞

−∞
op(fm(x), gm

2 (x))dx.

The conditions up to Inequality 5 are now satisfied, and we may apply the
procedure which followed that inequality to show that there exist functions
fm(x), gm

1
′(x), and g2(x) which do not satisfy FOSD.
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In conclusion, if there exist three distributions such that∫ ∞

−∞
op(f(x), g1(x))dx 6=

∫ ∞

−∞
op(f(x), g2(x))dx,

then either FOSD is not satisfied for the distributions as given, or new PDFs
can be constructed for which FOSD does not hold.

6.3 Proofs of results from the text

Proposition 2 The posterior distribution post(f, g1, op, x) MLRPs post(f, g2, op, x)
iff the function op(f(x), g1(x)) MLRPs the function op(f(x), g2(x)).

Proof: MLRP means that the ratio

op(f(x), g1(x))
op(f(x), g2(x))

is increasing in x. Of course, multiplying the ratio by a constant (in terms
of x) won’t change this, so

op(f(x), g1(x))
op(f(x), g2(x))

·
∫∞
−∞ op(f(y), g2(y))dy∫∞
−∞ op(f(y), g1(y))dy

is also increasing in x. But this is the ratio of the posteriors, so the posteriors
satisfy the MLRP.

The steps reverse to show the ‘only if’ part of the statement. ♦

Lemma 3 A continuous operator preserves the MLRP iff it is of the form

op(a, b) = t(a) · bp,

with p > 0, and t(·) any transformation.

Proof: First, consider four positive real numbers, a, b, c, and d, and a
continuous function φ : R → R such that

a

b
>

c

d
⇒ φ(a)

φ(b)
>

φ(c)
φ(d)

(8)

for all positive a, b, c, and d. What can be said about the function φ(·)?
Setting b ≡ (ad/c)+ε, ad > cb, so φ(a)φ(d) > φ(c)φ(b); setting b ≡ (ad/c)−ε,

ad < cb, so φ(a)φ(d) < φ(c)φ(b); so by continuity, it must be the case that
φ(a)φ(d) = φ(c)φ(b) whenever ad = cb. This means that φ(a)φ(d) is a function
only of the product ad, and can be expressed as a new one-argument function
π(ad) ≡ φ(a)φ(d).
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Taking the derivative of this identity gives two new equations:

φ′(a)φ(d) = π′(ad) · d
and

φ(a)φ′(d) = π′(ad) · a

Rearranging:
φ′(a)
φ(a)

· a =
φ′(d)
φ(d)

· d.

Rewrite φ′(a)/φ(a) as d ln(φ(a))/da, and notice that this equation holds for any
a and d. So for some constant p and for any x ∈ R,

d ln(φ(x))
dx

· x = p.

Integrating p/x and exponentiating gives:

φ(x) = Cxp,

where ln C is the constant of integration.
Let α > β and take a = g1(α), b = g2(α), c = g1(β), d = g2(β), and

φ(x) = op(f, g, x). Then making these substitutions into Implication 8 gives:

g1(α)
g2(α)

>
g1(β)
g2(β)

⇒ op(f, g1, α)
op(f, g2, α)

>
op(f, g1, β)
op(f, g2, β)

. (9)

That is: if g1(·) MLRPs g2(·), then op(f(·), g1(·), ·) MLRPs op(f(·), g2(·), ·).
The proof shows that this can only be the case when op(f, g) is of the form Cgp.
The constant C may be a function of f but not of g.

This proves that any function which preserves the MLRP must be a mono-
mial.

To show that any monomial updating operator preserves the MLRP, let
g1(x)/g2(x) be an increasing function of x. Then

Cgp
1(x)

Cgp
2(x)

=
(

g1(x)
g2(x)

)p

must also be increasing, so long as p > 0. ♦

Proposition 5 Given any pair of priors g1 and g2 which satisfy single-crossing,
and any function f , and an updating operator op(f, g) which is monotonically
increasing in f and g, the operator op(·, ·) provides posteriors ordered by FOSD
iff the function is of the form

op(f, g) = t(f) + qg,

where t(·) is a transformation function of any form, and q is any positive con-
stant.
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Proof: We need only prove that∫ ∞

−∞
op(f, g1, x)dx =

∫ ∞

−∞
op(f, g2, x)dx (10)

if and only if op(f, g, x) can be written in the form t(f) + qg; Proposition 14
(page 13) proves the rest.

To show that the integral of t(f(x)) + qg(x) is constant in changes in g(·),
we need only break down the integral:∫ ∞

−∞
t(f(x)) + qg(x)dx =

∫ ∞

−∞
t(f(x))dx +

∫ ∞

−∞
qg(x)dx

=
∫ ∞

−∞
t(f(x))dx + q.

This is constant with respect to g(·).
To prove the other direction, I use the following three sample functions to

show that if the updating operator is not of the form given here, then Equation
10 does not hold (and so posteriors will not satisfy FOSD, by Proposition 14).

f(x) =
{

1
ε x ∈ [0, ε]
0 x 6∈ [0, ε]

g1(x) =
{

1
ε x ∈ [0, ε]
0 x 6∈ [0, ε]

g2(x) =
{

1
ε x ∈ [1, 1 + ε]
0 x 6∈ [1, 1 + ε]

For simplicity, g1(x) and g2(x) are weakly single-crossing, but they may be
smoothed out to functions which are strictly single-crossing.

Here are some useful integrals, which hold for all n, m > 0:∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
g1(x)dx =

∫ ∞

−∞
g2(x)dx = 1∫ ∞

−∞
fn(x)gm

1 (x)dx =
(

1
ε

)(n+m−1)

∫ ∞

−∞
fn(x)gm

2 (x)dx = 0

Now consider any function op(a, b). Weirstrass’s polynomial approximation
theorem tells us that any continuous function can be approximated arbitrarily
well by a polynomial of the form

op(a, b) =
∑

i=0,1,2,...

j=0,1,2,...

kija
ibj
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When will
∫∞
−∞ op(f(x), g1(x))dx =

∫∞
−∞ op(f(x), g2(x))dx? If the expansion

includes terms of the form ki0f
i(x), where g1(x) or g2(x) do not appear, these

will be equal between both integrals. A term of the form k01g(x) will integrate
to one in both cases. But any other term will differ from one integral to the
other. Letting ε get arbitrarily large will make this difference as large as wished,
outstripping the error term in the polynomial approximation. So if op(a, b) is
not of the form given in the theorem, there exist functions f(x), g1(x), and
g2(x) such that g1(x) and g2(x) are single-crossing, but Equation 10 does not
hold, and so the posteriors do not satisfy FOSD. ♦

Lemma 6 An updating operator op(f, g) which is monotonically increasing in
f and g preserves single-crossing iff the function is of the form

op(f, g) = t(f) + qg,

where t(·) is a transformation function of any form, and q is any positive con-
stant.

Proof: Any pair of single-crossing priors satisfies FOSD (Lemma 11).
Therefore, if op(a, b1) and op(a, b2) take any pair of functions which satisfies
FOSD and return a pair of functions which satisfy FOSD, then this updating
operator takes any pair of functions which satisfies single-crossing, and returns
a pair of functions which satisfy FOSD. By Proposition 5, it must be the case
that this operator is of the linear form given in that proposition.

If g1(x) > g2(x), then since∫ ∞

−∞
t(f(x)) + g1(x)dx =

∫ ∞

−∞
t(f(x)) + g2(x)dx,

t(f(x)) + g1(x)∫∞
−∞ t(f(x)) + g1(x)dx

>
t(f(x)) + g2(x)∫∞

−∞ t(f(x)) + g2(x)dx
.

So if g1(x) > g2(x) for all x < K, where K is the crossing point of the priors,
then post1(x) > post2(x) for all x < K; conversely for all x ≥ K, meaning that
if the priors satisfy single-crossing, so do the posteriors. ♦

Theorem 7 Within the class of operators op(f, g) which are monotonically in-
creasing in both arguments, an operator preserves FOSD iff it is of the form
op(f, g) = t(f) + qg, where t(·) is a transformation function of any form and q
is a positive constant.

Proof: Necessity: Single-crossing priors are a subset of FOSD priors, so it
must be the case that this operator is in the class of operators described by
Proposition 5 (or equivalently, Proposition 14).

Sufficiency is easily checked: if g1(x) FOSDs g2(x), then Inequality 11 holds
for any k; the rest follows from algebra (and the fact that the integral in the
denominator of Inequality 12 is the same for both g1 and g2).∫ ∞

k

g1(x)dx >

∫ ∞

k

g2(x)dx (11)
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∫ ∞

k

t(f(x)) + q

∫ ∞

k

g1(x)dx >

∫ ∞

k

t(f(x))dx + q

∫ ∞

k

g2(x)dx∫ ∞

k

t(f(x)) + qg1(x)dx >

∫ ∞

k

t(f(x)) + qg2(x)dx∫∞
k

t(f(x)) + qg1(x)dx∫∞
−∞(f(x)) + qg1(x)dx

>

∫∞
k

t(f(x)) + qg2(x)dx∫∞
−∞ t(f(x)) + qg2(x)dx

(12)

♦
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