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The paper considers situations where groups of agents sharing a common goal must vote on
a binary decision on the basis of private information. Applications include corporate boards of
directors, medical panel, and most notably, juries.

1 The Nature of Private Information

How should one model the private information of jury members? Previous studies, including
Feddersen and Pesendorfer (1998), assume that agents receive draws from a discrete distribution
typically indicating only an ”innocent” or ”guilty” signal. Duggan and Martinelli seek to replace
this signal mechanism with one producing signals from a continuous distribution. There are two
reasons:

1. Realism

2. Equilibrium characteristics: Using discrete signals, equilibria often require some jurors to
employ mixed strategies. It may be desirable to create a model with pure strategy equilibria.

2 The Model

2.1 Primitives

• Jury size of n ≥ 2 Let N denote the set of jurors.

• The defendant is either innocent, I, or guilty, G with probabilities P (I) and P (G)

• Each juror receives a signal, si, which is drawn from either F (·|I) or F (·|G) depending on
the innocence or guilt of the defendant.

• Procedure: Jurors receive their signals and then simultaneously submit their votes.

• Decision Rule: Let nc represent the number of votes for conviction. If nc ≥ k, then the
defendant is convicted, C. Otherwise, the defendant is acquitted, A.

• Utility Functions: u(C|G) = u(A|I) = 0 u(A|G), u(C|I) < 0 This allows one to com-
pute some useful quantities. u(C|I)P (I) is the ex ante expected cost of conviction, and
u(A|G)P (G) is the ex ante expected cost of acquittal. Thus, ρ = u(A|G)

u(C|I)
P (G)
PI represents the

relative ex ante cost of acquittal.

• Strategies: σi : < → [0, 1], where σi(si) is the probability that agent i will convict given
their signal. This allows the calculation of the probability that juror i will convict conditional
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only on guilt or innocence:

P i
σi

(C|I) =
∫

σi(s)µI(ds)

P i
σi

(C|G) =
∫

σi(s)µG(ds)

where µI and µG are induced by F (·|I) and F (·|G)

2.2 Payoffs

• Let σ denote the vector of strategies used by the n jurors. Given this strategy the probability
of conviction given innocence is:

Pσ(C|I) =
∑

M⊆N
|M|≥k

∏
j∈M

(
∫

σi(s)µI(ds))
∏

j /∈M

(
∫

[1− σi(s)]µI(ds)) (1)

Similarly, the probability of acquittal given guilt is:

Pσ(A|G) =
∑

M⊆N
|M|<k

∏
j∈M

(
∫

σi(s)µG(ds))
∏

j /∈M

(
∫

[1− σi(s)]µG(ds)) (2)

• Hence, the payoff to any juror from profile σ is given by:

PAY OFF = P (I)[(0)(1− Pσ(C|I)) + u(C|I)Pσ(C|I)] + P (G)[(0)(1− Pσ(A|G)) + u(A|G)Pσ(A|G)]
= P (I)u(C|I)Pσ(C|I)P (I) + u(A|G)Pσ(A|G)P (G)

• When optimizing, each juror must take into account the probability that they themselves
will be pivotal, or that they will cast the deciding vote, conditional on the strategic decisions
of the other players (σ−i). Depending on guilt or innocence these are given by:

Pσ−i
(piv|I) =

∑
M⊆N

|M|=k−1, i/∈M

∏
j∈M

(
∫

σi(s)µI(ds))
∏

j /∈M, i6=j

(
∫

[1− σi(s)]µI(ds))

Pσ−i
(piv|G) =

∑
M⊆N

|M|=k−1, i/∈M

∏
j∈M

(
∫

σi(s)µG(ds))
∏

j /∈M, i6=j

(
∫

[1− σi(s)]µG(ds))

• Proposition (1): Given σ−i, the ex ante payoff to juror i from σi is an affine transformation
of:

(
∫

σi(s)µI(ds))u(C|I)Pσ−i(piv|I)P (I)− (
∫

σi(s)µG(ds))u(A|G)Pσ−i(piv|G)P (G) (3)
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2.3 Equilibria

• Strategy profile σ constitutes an equilibrium if for every juror i and for every alternate
strategy for i, σ′

i:

P (I)u(C|I)Pσ(C|I)P (I) + u(A|G)Pσ(A|G)P (G) ≥ P (I)u(C|I)Pσ′i,σ−i
(C|I)P (I) + u(A|G)Pσ′i,σ−i

(A|G)P (G)

• A responsive equilibrium is one in which no juror convicts or acquits irrespective of their
signal: 0 <

∫
σi(s)µI(ds) < 1, and 0 <

∫
σi(s)µG(ds) < 1

• Duggan and Martinelli are interested in finding cutoff equilibria in which each juror plays a
cutoff strategy such that for some si ∈ [−∞,∞]: σi = 1 if s > si, σi = 0 if s < si

• Duggan and Martinelli make the following four assumptions which allow them to focus only
on cutoff equilibria:

1. (A1) The distribution functions are absolutely continuous with respect to Lebesgue
measure and have piecewise continuous densities f(·, I) and f(·, G)

2. (A2) The densities have common support, S = (S, S), S, S ∈ [−∞,∞]

3. (A3) The likelihood ratio f(s|I)
f(s|G) is weakly decreasing in s. At times it will be useful to

assume that the likelihood ratio is locally strictly decreasing at some point.

4. (A4) lims↓S
f(s|I)
f(s|G) > ρ > lims↑S

f(s|I)
f(s|G)

• . Consider the following function: J(σ−i, s) =
Pσ−i

(piv|I)

Pσ−i
(piv|G)

f(s|I)
f(s|G)−ρ. J(σ−i, s) is positive if the

expected payoff to a vote for acquittal exceeds the expected payoff to a vote for conviction.
The function is weakly decreasing in s.

• . Lemma 1. Given responsive strategies σ−i, a strategy σi is a best response for i if and only
if it satisfies the following a.e.:

σi(s) = 1 if J(σ−i, s) < 0
σi(s) = 0 if J(σ−i, s) > 0

If the likelihood ratio is strictly locally decreasing at inf(s ∈ S|J(σ−i, s) ≤ 0), then σi is a
best response for i if and only if it is equivalent a.e. to the cutoff strategy given by:

σ̃i(s) = 1 if J(σ−i, s) ≤ 0
σ̃i(s) = 0 if J(σ−i, s) > 0

• Theorem 1: There exists a symmetric responsive cutoff equilibrium with cutoff given by
s∗ = inf(s ∈ S|J(σ−i, s) ≤ 0), which is unique in the class of symmetric responsive cutoff
profiles. If the likelihood ratio is locally strictly decreasing at s∗, then this equilibrium is
unique a.e. within the class of all symmetric responsive profiles.

• Note that s∗ is weakly decreasing in ρ.
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3 Evaluating the Unanimity Rule

• Define hazard rates for when the defendant is innocent and guilty:

H(s|I) =
f(s|I)

1− F (s|I)

H(s|G) =
f(s|G)

1− F (s|G)

• Let sn and sk denote the cutoff values for the decision rules requiring n and k votes to
convict, respectively.

• Lemma 3: If n ≥ k′ > k ≥ 1, then sk′ ≤ sk

• Corollary 1: If H(s|I)
H(s|G) is weakly increasing on an open interval including [sn, sk], then

Pn(C|I)
Pn(C|G)

>
Pk(C|I)
Pk(C|G)

(4)
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