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PREFACE

Mathematics provides a framework for dealing precisely with notions of “what is.”
Computation provides a framework for dealing precisely with notions of “how to.”

—Alan J Perlis, in Abelson et al. (1985, p xvi)

SHOULD YOU USE THIS BOOK? This book is intended to be a complement to the
standard stats textbook, in three ways.

First, descriptive and inferential statistics are kept separate beginning with the first
sentence of the first chapter. I believe that the fusing of the two is the number one
cause of confusion among statistics students.

Once descriptive modeling is given its own space, and models do not necessarily
have to be just preparation for a test, the options blossom. There are myriad ways
to convert a subjective understanding of the world into a mathematical model,
including simulations, models like the Bernoulli/Poisson distributions from tradi-
tional probability theory, ordinary least squares, and who knows what else.

If those options aren’t enough, simple models can be combined to form multi-
level models to describe situations of arbitrary complexity. That is, the basic linear
model or the Bernoulli/Poisson models may seem too simple for many situations,
but they are building blocks that let us produce more descriptive models. The over-
all approach concludes with multilevel models as in, e.g., Eliason (1993), Pawitan
(2001) or Gelman & Hill (2007).
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Second, many stats texts aim to be as complete as possible, because completeness
and a thick spine give the impression of value-for-money: you get a textbook and
a reference book, so everything you need is guaranteed to be in there somewhere.

Butit’s hard to learn from a reference book. So I have made a solid effort to provide
a narrative to the important points about statistics, even though that directly implies
that this book is incomplete relative to the more encyclopadic texts. For example,
moment generating functions are an interesting narrative on their own, but they are

tangential to the story here, so I do not mention them.

Computation

The third manner in which this book complements the traditional

stats textbook is that it acknowledges that if you are working with
data full time, then you are working on a computer full time. The better you un-
derstand computing, the more you will be able to do with your data, and the faster

you will be able to do it.

The politics of software

All of the software in this book is free software,
meaning that it may be freely downloaded and dis-
tributed. This is because the book focuses on porta-
bility and replicability, and if you need to purchase a
license every time you switch computers, then the code
is not portable.

If you redistribute a functioning program that you
wrote based on the GSL or Apophenia, then you need
to redistribute both the compiled final program and the
source code you used to write the program. If you are
publishing an academic work, you should be doing this
anyway. If you are in a situation where you will dis-
tribute only the output of an analysis, there are no obli-
gations at all.

This book is also reliant on POSIX-compliant sys-
tems, because such systems were built from the ground
up for writing and running replicable and portable
projects. This does not exclude any current operating
system (OS): current members of the Microsoft Win-
dows family of OSes claim POSIX compliance, as do
all OSes ending in X (Mac OS X, Linux, UNIX, ...).

People like to characterize comput-
ing as fast-paced and ever-changing,
but much of that is just churn on the
syntactic surface. The fundamental
concepts, conceived by mathemati-
cians with an eye toward the sim-
plicity and elegance of pencil-and-
paper math, have been around for
as long as anybody can remember.
Time spent learning those funda-
mentals will pay off no matter what
exciting new language everybody
happens to be using this month.

I spent much of my life ignor-
ing the fundamentals of computing
and just hacking together projects
using the package or language of
the month: C++, Mathematica, Oc-
tave, Perl, Python, Java, Scheme, S-
PLUS, Stata, R, and probably a few

others that I've forgotten. Albee (1960, p 30) explains that “sometimes it’s neces-
sary to go a long distance out of the way in order to come back a short distance
correctly;” this is the distance I’ve gone to arrive at writing a book on data-oriented
computing using a general and basic computing language. For the purpose of mod-
eling with data, I have found C to be an easier and more pleasant language than the
purpose-built alternatives—especially after I worked out that I could ignore much
of the advice from books written in the 1980s and apply the techniques I learned
from the scripting languages.
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WHAT IS THE LEVEL OF THIS BOOK? The short answer is that this is intended

for the graduate student or independent re-

searcher, either as a supplement to a standard first-year stats text or for later study.
Here are a few more ways to answer that question:

* Ease of use versus ease of initial use: The majority of statistics students are just
trying to slog through their department’s stats requirement so they can never look
at another data set again. If that is you, then your sole concern is ease of initial use,
and you want a stats package and a textbook that focus less on full proficiency and
more on immediate intuition. !

Conversely, this book is not really about solving today’s problem as quickly as
physically possible, but about getting a better understanding of data handling, com-
puting, and statistics. Ease of long-term use will follow therefrom.

* Level of computing abstraction: This book takes the fundamentals of computing
seriously, but it is not about reinventing the wheels of statistical computing. For
example, Numerical Recipes in C (Press et al., 1988) is a classic text describing the
algorithms for seeking optima, efficiently calculating determinants, and making
random draws from a Normal distribution. Being such a classic, there are many
packages that implement algorithms on its level, and this book will build upon
those packages rather than replicate their effort.

* Computing experience: You may have never taken a computer science course, but
do have some experience in both the basics of dealing with a computer and in
writing scripts in either a stats package or a scripting language like Perl or Python.

* Computational detail: This book includes about 80 working sample programs.

Code clarifies everything: English text may have a few ambiguities, but all the
details have to be in place for a program to execute correctly. Also, code rewards
the curious, because readers can explore the data, find out to what changes a pro-
cedure is robust, and otherwise productively break the code.
That means that this book is not computing-system-agnostic. So if you are a devo-
tee of a stats package not used here, then why look at this book? Although I do
not shy away from C-specific details of syntax, most of the book focuses on the
conceptual issues common to all computing environments. If you never look at C
code again after you finish this book, you will still have a better grounding for
effectively working in your preferred programming language.

* Linear algebra: You are reasonably familiar with linear algebra, such that an ex-
pression like X! is not foreign to you. There are a countably infinite number of
linear algebra tutorials in books, stats text appendices, and online, so this book
does not include yet another.

* Statistical topics: The book’s statistical topics are not particularly advanced or
trendy: OLS, maximum likelihood, or bootstrapping are all staples of first-year
grad-level stats. But by creatively combining building blocks such as these, you
will be able to model data and situations of arbitrary complexity.

T myself learned a few things from the excellently written narrative in Gonick & Smith (1994).
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STATISTICS IN THE MODERN DAY

Retake the falling snow: each drifting flake
Shapeless and slow, unsteady and opaque,
A dull dark white against the day’s pale white
And abstract larches in the neutral light.
—Nabokov (1962, lines 13-16)

Statistical analysis has two goals, which directly conflict. The first is to find pat-
terns in static: given the infinite number of variables that one could observe, how
can one discover the relations and patterns that make human sense? The second
goal is a fight against apophenia, the human tendency to invent patterns in random
static. Given that someone has found a pattern regarding a handful of variables,
how can one verify that it is not just the product of a lucky draw or an overactive
imagination?

Or, consider the complementary dichotomy of objective versus subjective. The
objective side is often called probability; e.g., given the assumptions of the Central
Limit Theorem, its conclusion is true with mathematical certainty. The subjective
side is often called statistics; e.g., our claim that observed quantity A is a linear
function of observed quantity B may be very useful, but Nature has no interest in
1t.

This book is about writing down subjective models based on our human under-
standing of how the world works, but which are heavily advised by objective in-
formation, including both mathematical theorems and observed data.'

10Of course, human-gathered data is never perfectly objective, but we all try our best to make it so.
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The typical scheme begins by proposing a model of the world, then estimating the
parameters of the model using the observed data, and then evaluating the fit of the
model. This scheme includes both a descriptive step (describing a pattern) and an
inferential step (testing whether there are indications that the pattern is valid). It
begins with a subjective model, but is heavily advised by objective data.

Figure 1.1 shows a model in flowchart form. First, the descriptive step: data and
parameters are fed into a function—which may be as simple as a is correlated
to b, or may be a complex set of interrelations—and the function spits out some
output. Then comes the testing step: evaluating the output based on some criterion,
typically regarding how well it matches some portion of the data. Our goal is to
find those parameters that produce output that best meets our evaluation criterion.

Data Data

Parameters Function » Output Evaluation

Figure 1.1 A flowchart for distribution fitting, linear regression, maximum likelihood methods,
multilevel modeling, simulation (including agent-based modeling), data mining, non-
parametric modeling, and various other methods. [Online source for the diagram:
models.dot.]

The Ordinary Least Squares (OLS) model is a popular and familiar example, pic-
tured in Figure 1.2. [If it is not familiar to you, we will cover it in Chapter 8.] Let
X indicate the independent data, 3 the parameters, and y the dependent data. Then
the function box consists of the simple equation y.,y = X3, and the evaluation
step seeks to minimize squared error, (y — yout)>.

X Yy

/6 X,6 Yout (y - YOut)2

Figure 1.2 The OLS model: a special case of Figure 1.1.

For a simulation, the function box may be a complex flowchart in which variables
are combined non-linearly with parameters, then feed back upon each other in
unpredictable ways. The final step would evaluate how well the simulation output
corresponds to the real-world phenomenon to be explained.

The key computational problem of statistical modeling is to find the parameters at
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the beginning of the flowchart that will output the best evaluation at the end. That
is, for a given function and evaluation in Figure 1.1, we seek a routine to take in
data and produce the optimal parameters, as in Figure 1.3. In the OLS model above,
there is a simple, one-equation solution to the problem: 3, ., = (X'X)™'X'y.
But for more complex models, such as simulations or many multilevel models, we
must strategically try different sets of parameters to hunt for the best ones.

A 4

Data Estimation Parameters

X’ y (X/X)_IXIY > ﬁbest

Figure 1.3 Top: the parameters which are the input for the model in Figure 1.1 are the output for the
estimation routine.
Bottom: the estimation of the OLS model is a simple equation.

And that’s the whole book: develop models whose parameters and tests may dis-
cover and verify interesting patterns in the data. But the setup is incredibly versa-
tile, and with different function specifications, the setup takes many forms. Among
a few minor asides, this book will cover the following topics, all of which are vari-
ants of Figure 1.1:

Probability: how well-known distributions can be used to model data
Projections: summarizing many-dimensional data in two or three dimensions
Estimating linear models such as OLS

Classical hypothesis testing: using the Central Limit Theorem (CLT) to ferret out
apophenia

Designing multilevel models, where one model’s output is the input to a parent
model

Maximum likelihood estimation
Hypothesis testing using likelihood ratio tests
Monte Carlo methods for describing parameters

“Nonparametric” modeling (which comfortably fits into the parametric form here),
such as smoothing data distributions

Bootstrapping to describe parameters and test hypotheses
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THE SNOWFLAKE PROBLEM, OR A BRIEF The simplest models in the above list

HISTORY OF STATISTICAL COMPUTING have only one or two parameters, like

a Binomial(n, p) distribution which is

built from n identical draws, each of which is a success with probability p [see

Chapter 7]. But draws in the real world are rarely identical—no two snowflakes

are exactly alike. It would be nice if an outcome variable, like annual income, were

determined entirely by one variable (like education), but we know that a few dozen

more enter into the picture (like age, race, marital status, geographical location, et
cetera).

The problem is to design a model that accommodates that sort of complexity, in
a manner that allows us to actually compute results. Before computers were com-
mon, the best we could do was analysis of variance methods (ANOVA), which
ascribed variation to a few potential causes [see Sections 7.1.3 and 9.4].

The first computational milestone, circa the early 1970s, arrived when civilian
computers had the power to easily invert matrices, a process that is necessary for
most linear models. The linear models such as ordinary least squares then became
dominant [see Chapter 8].

The second milestone, circa the mid 1990s, arrived when desktop computing power
was sufficient to easily gather enough local information to pin down the global op-
timum of a complex function—perhaps thousands or millions of evaluations of the
function. The functions that these methods can handle are much more general than
the linear models: you can now write and optimize models with millions of inter-
acting agents or functions consisting of the sum of a thousand sub-distributions
[see Chapter 10].

The ironic result of such computational power is that it allows us to return to the
simple models like the Binomial distribution. But instead of specifying a fixed n
and p for the entire population, every observation could take on a value of n that is
a function of the individual’s age, race, et cetera, and a value of p that is a different
function of age, race, et cetera [see Section 8.4].

The models in Part IT are listed more-or-less in order of complexity. The infinitely
quotable Albert Einstein advised, “make everything as simple as possible, but not
simpler.” The Central Limit Theorem tells us that errors often are Normally dis-
tributed, and it is often the case that the dependent variable is basically a linear or
log-linear function of several variables. If such descriptions do no violence to the
reality from which the data were culled, then OLS is the method to use, and using
more general techniques will not be any more persuasive. But if these assumptions
do not apply, we no longer need to assume linearity to overcome the snowflake
problem.
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THE PIPELINE A statistical analysis is a guided series of transformations of the data
from its raw form as originally written down to a simple summary
regarding a question of interest.

The flow above, in the statistics textbook tradition, picked up halfway through the
analysis: it assumes a data set that is in the correct form. But the full pipeline goes
from the original messy data set to a final estimation of a statistical model. It is
built from functions that each incrementally transform the data in some manner,
like removing missing data, selecting a subset of the data, or summarizing it into a
single statistic like a mean or variance.

Thus, you can think of this book as a catalog of pipe sections and filters, plus
a discussion of how to fit elements together to form a stream from raw data to
final publishable output. As well as the pipe sections listed above, such as the
ordinary least squares or maximum likelihood procedures, the book also covers
several techniques for directly transforming data, computing statistics, and welding
all these sections into a full program:

* Structuring programs using modular functions and the stack of frames
* Programming tools like the debugger and profiler

* Methods for reliability testing functions and making them more robust
» Databases, and how to get them to produce data in the format you need

 Talking to external programs, like graphics packages that will generate visualiza-
tions of your data

* Finding and using pre-existing functions to quickly estimate the parameters of a
model from data.

* Optimization routines: how they work and how to use them

* Monte Carlo methods: getting a picture of a model via millions of random draws

To make things still more concrete, almost all of the sample code in this book
is available from the book’s Web site, linked from http://press.princeton.
edu/titles/8706.html. This means that you can learn by running and modify-
ing the examples, or you can cut, paste, and modify the sample code to get your
own analyses running more quickly. The programs are listed and given a complete
discussion on the pages of this book, so you can read it on the bus or at the beach,
but you are very much encouraged to read through this book while sitting at your
computer, where you can run the sample code, see what happens given different
settings, and otherwise explore.

Figure 1.4 gives a typical pipeline from raw data to final paper. It works at a number
of different layers of abstraction: some segments involve manipulating individual
numbers, some segments take low-level numerical manipulation as given and op-



gsl_stats March 24, 2009

6 CHAPTER 1
Output
Part 11 are .
parameters
Input Appendix B | SQL Ch3 /

C Matrix Ch5
Data Database
] Plots

and graphs

Figure 1.4 Filtering from input data to outputs. [Online source: datafiltering.dot]

erate on database tables or matrices, and some segments take matrix operations as
given and run higher-level hypothesis tests.

The lowest level  Chapter 2 presents a tutorial on the C programming language it-

self. The work here is at the lowest level of abstraction, covering

nothing more difficult than adding columns of numbers. The chapter also discusses

how C facilitates the development and use of libraries: sets of functions written by

past programmers that provide the tools to do work at higher and higher levels of
abstraction (and thus ignore details at lower levels).?

For a number of reasons to be discussed below, the book relies on the C program-
ming language for most of the pipe-fitting, but if there is a certain section that
you find useful (the appendices and the chapter on databases comes to mind) then
there is nothing keeping you from welding that pipe section to others using another
programming language or system.

Dealing with large data sets ~ Computers today are able to crunch numbers a hun-

dred times faster they did a decade ago—but the data

sets they have to crunch are a thousand times larger. Geneticists routinely pull

550,000 genetic markers each from a hundred or a thousand patients. The US

Census Bureau’s 1% sample covers almost 3 million people. Thus, the next layer

of abstraction provides specialized tools for dealing with data sets: databases and

a query language for organizing data. Chapter 3 presents a new syntax for talking

to a database, Structured Query Language (SQL). You will find that many types

of data manipulation and filtering that are difficult in traditional languages or stats
packages are trivial—even pleasant—via SQL.

2Why does the book omit a linear algebra tutorial but include an extensive C tutorial? Primarily because the
use of linear algebra has not changed much this century, while the use of C has evolved as more libraries have
become available. If you were writing C code in the early 1980s, you were using only the standard library and
thus writing at a very low level. In the present day, the process of writing code is more about joining together
libraries than writing from scratch. I felt that existing C tutorials and books focused too heavily on the process of
writing from scratch, perpetuating the myth that C is appropriate only for low-level bit shifting. The discussion
of C here introduces tools like package managers, the debugger, and the make utility as early as possible, so you
can start calling existing libraries as quickly and easily as possible.
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As Huber (2000, p 619) explains: “Large real-life problems always require a com-
bination of database management and data analysis. ... Neither database manage-
ment systems nor traditional statistical packages are up to the task.” The solution is
to build a pipeline, as per Figure 1.4, that includes both database management and
statistical analysis sections. Much of graceful data handling is in knowing where
along the pipeline to place a filtering operation. The database is the appropriate
place to filter out bad data, join together data from multiple sources, and aggregate
data into group means and sums. C matrices are appropriate for filtering operations
like those from earlier that took in data, applied a function like (X’X)~'X'y, and

then measured (yout — y)2.

Because your data probably did not come pre-loaded into a database, Appendix
B discusses text manipulation techniques, so when the database expects your data
set to use commas but your data is separated by erratic tabs, you will be able to
quickly surmount the problem and move on to analysis.

Computation The GNU Scientific Library works at the numerical computation

layer of abstraction. It includes tools for all of the procedures com-

monly used in statistics, such as linear algebra operations, looking up the value

of F, t, X2 distributions, and finding maxima of likelihood functions. Chapter 4
presents some basics for data-oriented use of the GSL.

The Apophenia library, primarily covered in Chapter 4, builds upon these other
layers of abstraction to provide functions at the level of data analysis, model fitting,
and hypothesis testing.

Pretty pictures  Good pictures can be essential to good research. They often reveal
patterns in data that look like mere static when that data is pre-
sented as a table of numbers, and are an effective means of communicating with
peers and persuading grantmakers. Consistent with the rest of this book, Chapter 5
will cover the use of Gnuplot and Graphviz, two packages that are freely available
for the computer you are using right now. Both are entirely automatable, so once
you have a graph or plot you like, you can have your C programs autogenerate
it or manipulate it in amusing ways, or can send your program to your colleague
in Madras and he will have no problem reproducing and modifying your plots.>
Once you have the basics down, animation and real-time graphics for simulations
are easy.

3Following a suggestion by Thomson (2001), I have chosen the gender of representative agents in this book
by flipping a coin.
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WHY C? You may be surprised to see a book about modern statistical computing

based on a language composed in 1972. Why use C instead of a special-

ized language or package like SAS, Stata, SPSS, S-Plus, SAGE, SIENA, SU-

DAAN, SYSTAT, SST, SHAZAM, J, K, GAUSS, GAMS, GLIM, GENSTAT,

GRETL, EViews, Egret, EQS, PcGive, MatLab, Minitab, Mupad, Maple, Mplus,

Maxima, MLn, Mathematica, WinBUGS, TSP, HLM, R, RATS, LISREL, Lisp-

Stat, LIMDEP, BMDP, Octave, Orange, OxMetrics, Weka, or Yorick? This may

be the only book to advocate statistical computing with a general computing lan-

guage, so I will take some time to give you a better idea of why modern numerical
analysis is best done in an old language.

One of the side effects of a programming language being stable for so long is that a
mythology builds around it. Sometimes the mythology is outdated or false: I have
seen professional computer programmers and writers claim that simple structures
like linked lists always need to be written from scratch in C (see Section 6.2 for
proof otherwise), that it takes ten to a hundred times as long to write a program in
C than in a more recently-written language like R, or that because people have used
C to write device drivers or other low-level work, it can not be used for high-level
work.* This section is partly intended to dispel such myths.

Is C a hard language? C was a hard language. With nothing but a basic 80s-era
compiler, you could easily make many hard-to-catch mis-

takes. But programmers have had a few decades to identify those pitfalls and build
tools to catch them. Modern compilers warn you of these issues, and debuggers let
you interact with your program as it runs to catch more quirks. C’s reputation as a
hard language means the tools around it have evolved to make it an easy language.

Computational speed—really  Using a stats package sure beats inverting matri-

ces by hand, but as computation goes, many stats

packages are still relatively slow, and that slowness can make otherwise useful
statistical methods infeasible.

R and Apophenia use the same C code for doing the Fisher exact test, so it makes
a good basis for a timing test.’ Listings 1.5 and 1.6 show programs in C and R
(respectively) that will run a Fisher exact test five million times on the same data
set. You can see that the C program is a bit more verbose: the steps taken in lines
3-8 of the C code and lines 1-6 of the R code are identical, but those lines are

4Out of courtesy, citations are omitted. This section makes frequent comparisons to R partly because it is a
salient and common stats package, and partly because I know it well, having used it on a daily basis for several
years.

S5That is, if you download the source code for R’s fisher.test function, you will find a set of procedures
written in C. Save for a few minor modifications, the code underlying the apop_test_fisher_exact function
is line-for-line identical.
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1 | #include <apop.h>
2 | int main(){
3 int i, test_ct = 5e6;
4 double data[] = { 30, 86,
5 24,38 };
6 apop_data «testdata = apop_line_to_data(data,0,2,2);
7 for (i = 0; i< test_ct; i++)
8 apop_test_fisher_exact(testdata);
911}

Listing 1.5 C code to time a Fisher exact test. It runs the same test five million times. Online source:
timefisher.c.

test_ct <— 5e6
data <— c( 30, 86,
24,38)
testdata<— matrix(data, nrow=2)
for (i in 1:test_ct){
fisher.test(testdata)

NN R WD =

}

Listing 1.6 R code to do the same test as Listing 1.5. Online source: Rtimefisher.

longer in C, and the C program has some preliminary code that the R script does
not have.

On my laptop, Listing 1.5 runs in under three minutes, while Listing 1.6 does the
same work in 89 minutes—about thirty times as long. So the investment of a little
more verbosity and a few extra stars and semicolons returns a thirty-fold speed
gain.® Nor is this an isolated test case: I can’t count how many times people have
told me stories about an analysis or simulation that took days or weeks in a stats
package but ran in minutes after they rewrote it in C.

Even for moderately-sized data sets, real computing speed opens up new possibili-
ties, because we can drop the (typically false) assumptions needed for closed-form
solutions in favor of maximum likelihood or Monte Carlo methods. The Monte
Carlo examples in Section 11.2 were produced using over a billion draws from ¢
distributions; if your stats package can’t produce a few hundred thousand draws
per second (some can’t), such work will be unfeasibly slow.”

SThese timings are actually based on a modified version of fisher.test that omits some additional R-side
calculations. If you had to put a Fisher test in a for loop without first editing R’s code, the R-to-C speed ratio
would be between fifty and a hundred.

7If you can produce random draws from ¢ distributions as a batch (draws <- rt(5e6, df)), thenR takes a
mere 3.5 times as long as comparable C code. But if you need to produce them individually (for (i in 1:5e8)
{draw <- rt(1, df)}), then R takes about fifteen times as long as comparable C code. On my laptop, R in
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Simplicity  C is a super-simple language. Its syntax has no special tricks for poly-

morphic operators, abstract classes, virtual inheritance, lexical scoping,

lambda expressions, or other such arcana, meaning that you have less to learn.

Those features are certainly helpful in their place, but without them C has already

proven to be sufficient for writing some impressive programs, like the Mac and
Linux operating systems and most of the stats packages listed above.

Simplicity affords stability—C is among the oldest programming languages in
common use today®—and stability brings its own benefits. First, you are reason-
ably assured that you will be able to verify and modify your work five or even
ten years from now. Since C was written in 1972, countless stats packages have
come and gone, while others are still around but have made so many changes in
syntax that they are effectively new languages. Either way, those who try to follow
the trends have on their hard drives dozens of scripts that they can’t run anymore.
Meanwhile, correctly written C programs from the 1970s will compile and run on
new PCs.

Second, people have had a few decades to write good libraries, and libraries that
build upon those libraries. It is not the syntax of a language that allows you to easily
handle complex structures and tasks, but the vocabulary, which in the case of C is
continually being expanded by new function libraries. With a statistics library on
hand, the C code in Listing 1.5 and the R code in Listing 1.6 work at the same high
level of abstraction.

Alternatively, if you need more precision, you can use C’s low-level bit-twiddling
to shunt individual elements of data. There is nothing more embarrassing than a
presenter who answers a question about an anomaly in the data or analysis with
‘Stata didn’t have a function to correct that.” [Yes, I have heard this in a real live
presentation by a real live researcher.] But since C’s higher-level and lower-level
libraries are equally accessible, you can work at the level of laziness or precision
called for in any given situation.

Interacting with C scripts ~ Many of the stats packages listed above provide a pleas-
ing interface that let you run regressions with just a few

mouse-clicks. Such systems are certainly useful for certain settings, such as ask-
ing a few quick questions of a new data set. But an un-replicable analysis based

on clicking an arbitrary sequence of on-screen buttons is as useful as no analysis

at all. In the context of building a repeatable script that takes the data as far as
possible along the pipeline from raw format to final published output, developing

batch mode produced draws at a rate ~ 424, 000/sec, while C produced draws at a rate ~ 1,470, 000/sec.

8However, it is not the oldest, an honor that goes to FORTRAN. This is noteworthy because some claim that
C is in common use today merely because of inertia, path dependency, et cetera. But C displaced a number of
other languages such as ALGOL and PL/I which had more inertia behind them, by making clear improvements
over the incumbents.
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script.do for an interpreter and developing program.c for a compiler become
about equivalent—especially since compilation on a modern computer takes on
the order of 0.0 seconds.

With a debugger, the distance is even smaller, because you can jump around your
C code, change intermediate values, and otherwise interact with your program the
way you would with a stats package. Graphical interfaces for stats packages and
for C debuggers tend to have a similar design.

But Cis ugly! C is by no means the best language for all possible purposes. Dif-
ferent systems have specialized syntaxes for communicating with
other programs, handling text, building Web pages, or producing certain graphics.
But for data analysis, C is very effective. It has its syntactic flaws: you will for-
get to append semicolons to every line, and will be frustrated that 3/2==1 while
3/2.==1.5. But then, Perl also requires semicolons after every line, and 3/2 is one
in Perl, Python, and Ruby too. Type declarations are one more detail to remember,
but the alternatives have their own warts: Perl basically requires that you declare
the type of your variable (@, $, or #) with every use, and R will guess the type you
meant to use, but will often guess wrong, such as thinking that a one-element list
like {14} is really just an integer. C’s printf statements look terribly confusing
at first, but the authors of Ruby and Python, striving for the most programmer-
friendly syntax possible, chose to use C’s printf syntax over many alternatives
that are easier on the eyes but harder to use.

In short, C does not do very well when measured by initial ease-of-use. But there is
a logic to its mess of stars and braces, and over the course of decades, C has proven
to be very well suited for designing pipelines for data analysis, linking together
libraries from disparate sources, and describing detailed or computation-intensive
models.

TYPOGRAPHY Here are some notes on the typographic conventions used by this
book.

% Seeing the forest for the trees  On the one hand, a good textbook should be a

narrative that plots a definite course through a

field. On the other hand, most fields have countless interesting and useful digres-

sions and side-paths. Sections marked with a x cover details that may be skipped

on a first reading. They are not necessarily advanced in the sense of being some-

how more difficult than unmarked text, but they may be distractions to the main
narrative.
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Questions and exercises are marked like this paragraph. The exercises are
not thought experiments. It happens to all of us that we think we understand
something until we sit down to actually do it, when a host of hairy details
QM turn up. Especially at the outset, the exercises are relatively simple tasks
that let you face the hairy details before your own real-world complications
enter the situation. Exercises in the later chapters are more involved and
require writing or modifying longer segments of code.

Notation

X: boldface, capital letters are matrices. With few exceptions, data matrices in this
book are organized so that the rows are each a single observation, and each column
is a variable.

x: lowercase boldface indicates a vector. Vectors are generally a column of num-
bers, and their transpose, X', is a row. y is typically a vector of dependent variables
(the exception being when we just need two generic data vectors, in which case
one will be x and one y).

x: A lowercase variable, not bold, is a scalar, i.e., a single real number.
X' is the transpose of the matrix X. Some authors notate this as XT.

X is the data matrix X with the mean of each column subtracted, meaning that each
column of X has mean zero. If X has a column of ones (as per most regression
techniques), then the constant column is left unmodified in X.

n: the number of observations in the data set under discussion, which is typically
the number of rows in X. When there is ambiguity, n will be subscripted.

I: The identity matrix. A square matrix with ones along its diagonal and zeros
everywhere else.

0: Greek letters indicate parameters to be estimated; if boldface, they are a vector
of parameters. The most common letter is 3, but others may slip in, such as. ..

o, ju: the standard deviation and the mean. The variance is 2.

o, B : a carat over a parameter indicates an empirical estimate of the parameter
derived from data. Typically read as, e.g., sigma hat, beta hat.

€ ~ N(0,1): Read this as epsilon is distributed as a Normal distribution with
parameters 0 and 1.
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P(-): A probability density function.

LL(-): The log likelihood function, In(P(-)).

S(-): The Score, which is the vector of derivatives of LL(-).

I(-): The information matrix, which is the matrix of second derivatives of LL(-).
E(-): The expected value, aka the mean, of the input.

P(z|3): The probability of x given that (3 is true.

P(x,()|,: The probability density function, holding x fixed. Mathematically, this
is simply P(x, 3), but in the given situation it should be thought of as a function
only of 3.°

E.(f(z,B)): Read as the expectation over x of the given function, which will take
a form like [, f(z,)P(x)dz. Because the integral is over all z, E,(f(z,3)) is

not itself a function of x.

teletype typeface indicates text that can be typed directly into a text file and
understood as a valid shell script, C commands, SQL queries, et cetera.

cat sample_file: Slanted teletype text indicates a placeholder for text you will
insert—a variable name rather than text to be read literally. You could read the
code here as, ‘let sample_file be the name of a file on your hard drive. Then
type cat sample_f<le at the command prompt’.

a = b: Read as ‘a is equivalent to b’ or ‘a is defined as b’.
a x b: Read as ‘a is proportional to b’.
2.3e6: Engineers often write scientific notation using so-called exponential or E

notation, such as 2.3 x 10% = 2.3e6. Many computing languages (including C,
SQL, and Gnuplot) recognize E-notated numbers.

Others use a different notation. For example, Efron & Hinkley (1978, p 458): “The log likelihood function
lg(x). . .is the log of the density function, thought of as a function of 6.” See page 329 for more on the philosoph-
ical considerations underlying the choice of notation.
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Every section ends with a summary of the main points, set like this para-
graph. There is much to be said for the strategy of flipping ahead to the
summary at the end of the section before reading the section itself.

The summary for the introduction:

z » This book will discuss methods of estimating and testing the param-
eters of a model with data.

» It will also cover the means of writing for a computer, including tech-
niques to manage data, plot data sets, manipulate matrices, estimate
statistical models, and test claims about their parameters.

Credits  Thanks to the following people, who added higher quality and richness to
the book:

* Anjeanette Agro for graphic design suggestions.
* Amber Baum for extensive testing and critique.

* The Brookings Institution’s Center on Social and Economic Dynamics, includ-
ing Rob Axtell, Josh Epstein, Carol Graham, Emily Groves, Ross Hammond, Jon
Parker, Matthew Raifman, and Peyton Young.

* Dorothy Gambrel, author of Cat and Girl, for the Lonely Planet data.

* Rob Goodspeed and the National Center for Smart Growth Research and Educa-
tion at the University of Maryland, for the Washington Metro data.

* Derrick Higgins for comments, critique, and the Perl commands on page 414.

* Lucy Day Hobor and Vickie Kearn for editorial assistance and making working
with Princeton University Press a pleasant experience.

* Guy Klemens, for a wide range of support on all fronts.
¢ Anne Laumann for the tattoo data set (Laumann & Derick, 2006).
* Abigail Rudman for her deft librarianship.
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This chapter introduces C and some of the general concepts behind good program-
ming that script writers often overlook. The function-based approach, stacks of
frames, debugging, test functions, and overall good style are immediately applica-
ble to virtually every programming language in use today. Thus, this chapter on C
may help you to become a better programmer with any programming language.

As for the syntax of C, this chapter will cover only a subset. C has 32 keywords
and this book will only use 18 of them.! Some of the other keywords are basi-
cally archaic, designed for the days when compilers needed help from the user to
optimize code. Other elements, like bit-shifting operators, are useful only if you
are writing an operating system or a hardware device driver. With all the parts of
C that directly manipulate hexadecimal memory addresses omitted, you will find
that C is a rather simple language that is well suited for simulations and handling
large data sets.

An outline  This chapter divides into three main parts. Sections 2.1 and 2.2 start

small, covering the syntax of individual lines of code to make assign-

ments, do arithmetic, and declare variables. Sections 2.3 through 2.5 introduce

functions, describing how C is built on the idea of modular functions that are each

independently built and evaluated. Sections 2.6 through 2.8 cover pointers, a some-

what C-specific means of handling computer memory that complements C’s means

of handling functions and large data structures. The remainder of the chapter offers
some tips on writing bug-free code.

1For comparison, C*+ has 62 keywords as of this writing, and Java has an even 50.
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Tools  You will need a number of tools before you can work, including a C compiler,
a debugger, the make facility, and a few libraries of functions. Some systems
have them all pre-installed, especially if you have a benevolent system adminis-
trator taking care of things. If you are not so fortunate, you will need to gather
the tools yourself. The online appendix to this book, at the site linked from http:
//press.princeton.edu/titles/8706.html, will guide you through the pro-
cess of putting together a complete C development environment and using the tools

for gathering the requisite libraries.?

Check your C environment by compiling and running “Hello, world,” a clas-
sic first program adapted from Kernighan & Ritchie (1988).

* Download the sample code for this book from the link at http://
press.princeton.edu/titles/8706.html.

* Decompress the .zip file, go into the directory thus created, and com-
pile the program with the command gcc hello_world.c. If you are
using an /DE, see your manual for compilation instructions.

Q2_1 * If all went well, you will now have a program in the directory named
either a.out or hello_world. From the command line, you can ex-
ecute it using ./a.out or . /hello_world.

* You may also want to try the makefile, which you will also find in
the code directory. See the instructions at the head of that file.

If you need troubleshooting help, see the online appendix, ask your local
computing guru, or copy and paste your error messages into your favorite
search engine.

2.1 LINES The story begins at the smallest level: a single line of code. Most
of the work on this level will be familiar to anyone who has written
programs in any language, including instructions like assignments, basic arith-
metic, if-then conditions, loops, and comments. For such common programming
elements, learning C is simply a question of the details of syntax. Also, C is a
typed language, meaning that you will need to specify whether every variable and
function is an integer, a real, a vector, or whatever. Thus, many of the lines will be
simple type declarations, whose syntax will be covered in the next section.

2 A pedantic note on standards: this book makes an effort to comply with the ISO C99 standard and the TEEE
POSIX standard. The C99 standard includes some features that do not appear in the great majority of C textbooks
(like designated initializers), but if your compiler does not support the features of C99 used here, then get a new
compiler—it’s been a long while since 1999. The POSIX standard defines features that are common to almost
every modern operating system, the most notable of which is the pipe; see Appendix B for details.

The focus is on gcc, because that is what I expect most readers will be using. The command-line switches
for the gcc command are obviously specific to that compiler, and users of other compilers will need to check
the compiler manual for corresponding switches. However, all C code should compile for any C99- and POSIX-
compliant compiler. Finally, the gcc switch most relevant to this footnote is -std=gnu99, which basically puts
the compiler in C99 + POSIX mode.
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ASSIGNMENT Most of the work you will be doing will be simple assignments. For
example,

[ratio =al/b;

will find the value of a divided by b and put the value in ratio. The = indicates
an assignment, not an assertion about equality; on paper, computer scientists often
write this as ratio < a/b, which nicely gets across an image of ratio taking
on the value of a/b. There is a semicolon at the end of the line; you will need a
semicolon at the end of everything but the few exceptions below.? You can use all
of the usual operations: +, -, /, and *. As per basic algebraic custom, * and / are
evaluated before + and -,s04 + 6 / 2isseven,and (4 + 6)/21is five.

% TWO TYPES OF DIVISION There are two ways to answer the question, “What is

11 divided by 3?” The common answer is that 11/3 =

3.66, but some say that it is three with a remainder of two. Many programming lan-

guages, including C, take the second approach. Dividing an integer by an integer

gives the answer with the fractional part thrown out, while the modulo operator, %,
finds the remainder. So 11/3 is 3 and 11%3 is 2.

Is k an even number? If it is, then k % 2 is zero.*

Splitting the process into two parts provides a touch of additional precision, be-
cause the machine can write down integers precisely, but can only approximate
real numbers like 3.66. Thus, the machine’s evaluation of (11.0/3.0)%3.0 may
be ever-so-slightly different from 11.0. But with the special handling of division
for integers, you are guaranteed that for any integers a and b (where b is not zero),
(a/b)*b + akbis exactly a.

But in most cases, you just want 11/3 = 3.66. The solution is to say when you
mean an integer and when you mean a real number that happens to take on an inte-
ger value, by adding a decimal point. 11/3 is 3, as above, but 11./3is3.66. .. as
desired. Get into the habit of adding decimal points now, because integer division
is a famous source of hard-to-debug errors. Page 33 covers the situation in slightly
more detail, and in the meantime we can move on to the more convenient parts of
the language.

3The number one cause of compiler complaints like “line 41: syntax error” is a missing semicolon on line 40.
4In practice, you can check evenness with GSL_IS_EVEN or GSL_IS_0DD:
#include <gsl/gsl_math.h>

if (GSL_IS_EVEN(k))
do_something();
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INCREMENTING It is incredibly common to have an operation of the form
a = a + b;—so common that C has a special syntax for it:
[a +=Db;

This is slightly less readable, but involves less redundancy. All of the above arith-
metic operators can take this form, so each of the following lines show two equiv-
alent expressions:

a —=b; /xis equivalent tox/ a =a
a %=Db; /xis equivalent tos/ a =a % b;
a /=b; /xis equivalent tox/ a =a
a %="b; /xis equivalent tox a =a

The most common operation among these is incrementing or decrementing by one,
and so C offers the following syntax for still less typing:>

at++; /xis equivalent to s/ a=a+l;
a——; /xis equivalent tos/ a=a —1;

CONDITIONS C has no need for FALSE and TRUE keywords for Boolean operations:

if an expression is zero, then it is false, and otherwise it is true. The

standard operations for comparison and Boolean algebra all appear in somewhat
familiar form:

(a>b) // a is greater than b

(a<b) //ais less than b

(a >=b) // a is greater than or equal to b
(a<=Db) // ais less than or equal to b

(a ==Db) // a equals b

(a !=b) // ais not equal to b

(a &&Db) //aand b
(a Il b) //aorb
(la) // not a

» All of these evaluate to either a one or a zero, depending on whether the expression
in parens is true or false.

SThere is also the pre-increment form, ++a and --a. Pre- and post-incrementing differ only when they are
being used in situations that are bad style and should be avoided. Leave these operations on a separate line and
stick to whichever form looks nicer to you.
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* The comparison for equality involves two equals signs in a row. One equals sign
(a = b) will assign the value of b to the variable a, which is not what you had
intended. Your compiler will warn you in most of the cases where you are probably
using the wrong one, and you should heed its warnings.

* The && and || operators have a convenient feature: if a is sufficient to determine
whether the entire expression is true, then it won’t bother with b at all. For example,
this code fragment—

[((a < 0) Il (sqrt(a) < 3))

—will never take the square root of a negative number. If a is less than zero, then
the evaluation of the expression is done after the first half (it is true), and evaluation
stops. If a>=0, then the first part of this expression is not sufficient to evaluate the
whole expression, so the second part is evaluated to determine whether y/a < 3.

Why all the parentheses? First, parentheses indicate the order of operations, as
they do in pencil-and-paper math. Since all comparisons evaluate to a zero or a
one, both ((a>b) [l (c>d)) and (a>(bllc)>d) make sense to C. You probably
meant the first, but unless you have the order-of-operations table memorized, you
won’t be sure which of the two C thinks you mean by (a>bllc>d).b

Second, the primary use of these conditionals is in flow control: causing the pro-
gram to repeat some lines while a condition is true, or execute some lines only if a
condition is false. In all of the cases below, you will need parentheses around the
conditions, and if you forget, you will get a confusing compiler error.

IF-ELSE STATEMENTS Here is a fragment of code (which will not compile by itself)
showing the syntax for conditional evaluations:

if (a>0)

{ b=sqrt(a); }
else

{b=0;}

AW =

If a is positive, then b will be given the value of a’s square root; if a is zero or
negative, then b is given the value zero.

* The condition to be evaluated is always in parentheses following the if statement,
and there should be curly braces around the part that will be evaluated when the

6The order-of-operations table is available online, but you are encouraged to not look it up. [If you must, try
man operator from the command prompt]. Most people remember only the basics like how multiplication and
division come before addition and subtraction; if you rely on the order-of-operations table for any other ordering,
then you will merely be sending future readers (perhaps yourself) to check the table.
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condition is true, and around the part that will be evaluated when the condition is
false.

You can exclude the curly braces on lines two and four if they surround exactly
one line, but this will at some point confuse you and cause you to regret leaving
them out.

You can exclude the else part on lines three and four if you don’t need it (which
is common, and much less likely to cause trouble).

The if statement and the line following it are smaller parts of one larger ex-
pression, so there is no semicolon between the if(...) clause and what hap-
pens should it be true; similarly with the else clause. If you do put a semicolon
after an if statement—if (a > 0);—then your if statement will execute the
null statement—/*do nothing#*/;—when a > 0. Your compiler will warn you
of this.

Modify hello_world.c to print its greeting if the expression

Q (1 Il O & 0) is true, and print a different message of your choos-
2.2

ing if it is false. Did C think you meant ((1 || 0) && 0) (which evaluates
toO)or (1 || (O && 0)) (which evaluates to 1)?

Looprs Listing 2.1 shows three types of loop, which are slightly redundant.

00NN Bk W=

DO M= = = = = e e = =
SO XN WD~ OO

#include <stdio.h>
int main(){
inti=0;
while (i < 5){
printf("Hello.\n");
i++;

}

for (i=0; 1 < 5; i++){
printf("Hi.\n");
}

i=0;

do {
printf("Hello.\n");
i++;

} while (i < 5);

return 0;

}

Listing 2.1 C provides three types of loop: the while loop, the for loop, and the do-while loop.
Online source: flow.c.
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The simplest is a while loop. The interpretation is rather straightforward: while
the expression in parentheses on line four is true (mustn’t forget the parentheses),
execute the instructions in brackets, lines five and six.

Loops based on a counter (i = 0,1 = 1,1 = 2, ...) are so common that they get
their own syntax, the for loop. The for loop in lines 9-11 is exactly equivalent to
the while loop in lines 3—7, but gathers all the instructions about incrementing the
counter onto a single line.

You can compare the for and while loop to see when the three subelements in the
parentheses are evaluated: the first part (1=0) is evaluated before the loop runs; the
second part (1<5) is tested at the beginning of each iteration of the loop; the third
part (i++) is evaluated at the end of each loop. After the section on arrays, you
will be very used to the for (i=0; i<limit; i++) form, and will recognize it
to mean step through the array. There may even be a way to get your text editor to
produce this form with one or two keystrokes.

Finally, if you want to guarantee that the loop will run at least once, you can use
a do-while loop (with a semicolon at the end of the while line to conclude the
thought). The do-while loop in Listing 2.1 is equivalent to the while and for
loops. But say that you want to iteratively evaluate a function until it converges to
within 1 x 1073, Naturally, you would want to run the function at least once. The
form would be something like:

do {
error = evaluate_function();
} while (error > 1e—3);

Example: the birthday paradox  The birthday paradox is a staple of undergraduate

statistics classes.’” The professor writes down the

birth date of every student in the class, and finds that even though there is a 1 in

365 chance that any given pair of students have the same birthday, the odds are
good that there is a match in the class overall.

Listing 2.2 shows code to find the likelihood that another student shares the first
person’s birthday, and the likelihood that any two students share a birthday.

* Most of the world’s programs never need to take a square root, so functions like
pow and sqrt are not included in the standard C library. They are in the separate
math library, which you must refer to on the command line. Thus, compile the
program with

7It even mystifies TV talk show hosts, according to Paulos (1988, p 36).
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#include <math.h>
#include <stdio.h>

int main(){
double no_match = 1;
double matches_me;
int ct;
printf("People\t Matches me\t Any match\n");
for (ct=2; ct<=40; ct ++){
matches_me = 1— pow(364/365., ct—1);
no_match = (1 — (ct—1)/365.);
printf(" %i\t %.30\t\t %.3f\n", ct, matches_me, (1—no_match));
}

return 0;

}

Listing 2.2 Print the odds that other students share my birthday, and that any two students in the
room share a birthday. Online source: birthday.c.

[gcc birthday.c —lm —o birthday

where -1m indicates the math library and -o indicates that the output program will
be named birthday (rather than the default a.out). More on linking and libraries
will follow below.

Lines 1-7 are introductory material, to be discussed below, including a preface
#include-ing a few external files, and a list of the dramatis person: variables
named no_match, matches_me, and ct.

Line 8 prints a header line labeling the columns of numbers the for loop will be
producing; it is easy to read once you know that \t means print a tab and \n
means newline.

Line 9 tells us that the counter ct will start at two, and count up until it reaches 40.

As for the math itself, it is easier to calculate the complement—the odds that no-
body shares a birthday. The odds that one person does not share the first person’s
birthday is 364/365; the odds that two people both do not share the first person’s
birthday is (364/365)2, et cetera.? Thus, the odds that among ct-1 additional peo-
ple, none have the same birthday as the first person is 1 — (364/365)°* . You can
see this calculation on line ten.

As above, the odds that the second person does not share the first person’s birthday

is (%). The odds that an additional person shares no birthday with the first two

given that the first two do not share a birthday is (252), so the odds that the first

8We assume away leap years, and the fact that the odds of being born on any given day are not exactly
1/365—more children are born in the summer.
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(@) (@) , @.1.1)
365 ) \ 365

This expression is best produced incrementally. In the introductory material, no_-
match was initialized at 1, and on line 11, another element of the sequence headed
by Expression 2.1.1 gets multiplied in to no_match at each step of the for loop.

three do not share a birthday is

* Line 12 prints the results. The first input to the printf function will be discussed
in detail below, but the next inputs indicate what is to be printed: the counter,
matches_me, and 1- (no_match).

Q.

Modify the for loop to verify that the program prints the correct values for
a class of one student.

COMMENTS Put a long block of comments at the head of a file and at the head of

each function to describe what the file or function does, using complete

sentences. Describe what the function expects to come in, and what the function

will put out. The common wisdom indicates that these comments should focus

on why your code is doing what it is doing, rather than how, which will be self-
explanatory in clearly-written code.’

The primary audience of your comment should be you, six months from now.
When you are shopping for black boxes to plug in to your next project, or re-
auditing your data after the referee finally got the paper back to you, a note to self
at the head of each function will pay immense dividends.

/% Long comments begin with a slash—star,
continue as long as you want, and end
at the first star—slash.

*/

The stars and slashes are also useful for commenting out code. If you would like
to temporarily remove a few lines from your program to see what would happen,
but don’t want to delete them entirely, simply put a /* and a */ around the code,
and the compiler will think it is a comment and ignore it.

However, there is a slight problem with this approach: what if there is a comment
in what you had just commented out? You would have a sequence like this in your
code:

9The sample code for this book attempts to be an example of good code in most respects, but it has much less
documentation than real-world code should have, because this book is the documentation.
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/+ Line A;
/% Line B +/
Line C;

*/

We had hoped that all three lines would be commented out now, but the compiler
will ignore everything from the first /* until it sees the first */. That means Line
A and Line B will be ignored, but

Line C;
*/

will be read as code—and malformed code at that.'?

You will always need to watch out for this when commenting out large blocks of
code. But for small blocks, there is another syntax for commenting individual lines
of code that deserve a note.

this_is_code; /Everything on a line
//after two slashes
//will be ignored.

Later, we will meet the preprocessor, which modifies the program’s text before
compilation. It provides another solution for commenting out large blocks that
may have comments embedded. The compiler will see none of the following code,
because the preprocessor will skip everything between the #if statement which
evaluates to zero and the #endif:

#f 0

/«This function does nothing. %/
void do_nothing(){ }

#endif

PRINTING C prints to anything—the screen, a string of text in memory, a file—
using the same syntax. The formatting works much like the Mad Libs
party game (Price & Stern, 1988). First, there is a format specifier, showing what

the output will be, but with blanks to be filled in:

10Q: If C didn’t have this quirk, and allowed comments inside comments, what different quirk would you have
to watch out for instead?
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My is very

noun adjective

Then, the user provides a specific instance of the noun and adjective to be filled in
(which in this case is left as an exercise for the reader). Since C is a programming
language and not a party game, the syntax is a little more terse. Instead of

is number in line.

string int
printf uses:
%s 1s number %i in line.

Here is a complete example:

#include <stdio.h>

int main(){
int position = 3;
char name|[] = "Steven";
printf("%s is number %i in line\n", name, position);
return 0;

The printf function is not actually defined by default—its definition in the stan-
dard input/output header must be #included, which is what line one does. Lines
four and five are variable declarations, defining the fypes of the variables; these
lines foreshadow the next section.

Finally, line six is the actual print statement, which will insert Steven into the first
placeholder (%s), and insert 3 into the second placeholder (%1i). It will thus print

Steven is number 3 in line (plus an invisible newline).

Here are the odd characters you will need for almost all of your work.

%1 insert an integer here

%g insert a real number in general format here

%s insert a string of text here

%% aplain percent sign

\n begin a new line

\t tab

\" aquote that won’t end the text string
\(newline) continue the text string on the next line
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There are many more format specifiers, which will give you a great deal of control;
you may want them when printing tables, for example, and can refer to any of a
number of detailed references when you need these, such as man 3 printf from
your command line.

At this point, you may want to flip through this book to find a few examples of
printf and verify that they will indeed print what they promise to.

» Assignment uses a single equals sign: assignee = value;.
» The usual arithmetic works: ten = 2%3+8/2;.

» Conditions such as (a > b), (a <= b), and (a == b) (two equals
signs) can be used to control flow.

» Conditional flow uses the form: if (condition) {do_if_true;}
z else {do_if_false;}.

» The basic loop is a while loop: while (this_is_true) {do_-
this;}.

» When iterating through an array, a for loop makes the iteration
clearer: for (j=0; j< limit; j++) {printf("processing
item %i\n", j);}.

» Write comments for your future self.

2.2 VARIABLES AND THEIR  Having covered the verbs that a line of code will
DECLARATIONS execute, we move on to the nouns—yvariables.

You would never use z or z in a paper without first declaring, say, ‘let z € R?
and z € C’. You could leave the reader to guess at what you mean by x by its
first use, but some readers would misunderstand, and your referee would wonder
why you did not just come out and declare z. C is a strict referee, and requires that
you declare the type of every variable before using it. The declaration consists of
listing the type of the variable and then the variable name, e.g.

int a_variable, counter=0;
double stuff;

* This snippet declared three variables in two lines.
* We could initialize counter to zero as it is declared.
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* The other variables (such as a_variable) have unknown values right now. As-
sume nothing about what is contained in a declared but uninitialized value.!!

* Since the first step in using a variable is typically an assignment, and you can
declare and initialize on the same line, the burden of declaring types basically
means putting a type at the head of the first line where the variable is used, as on
lines four and five of the sample code on page 27.

Here is a comprehensive list of the useful basic types for C.

int aninteger: —1,0,3
double areal number: 2.4, —1.3e8, 27
char acharacter: ‘a’, ‘b’, ‘C’

An int can only count to about 232 ~ 4.3 billion; you may have a simulation
that involves five billion agents or other such uses for counting into the trillions, in
which case you can use the long int type.'?

There are ways to extend or shrink the size of the numbers, which are basically
not worth caring about. A double counts up to about +1e308, which is already
significantly more than common estimates of the number of atoms in the universe
(circa 1e80), but there is a long double type in case you need more precision or
size.!? Section 4.5 offers detailed notes about how numbers are represented.

Finally, notice that the variable names used throughout are words, not letters.'*
Using English variable names is the number one best thing you could do to make
your code readable. Imagine how much of your life you have spent flipping back
through journal articles trying to remember what p, M, and m stood for. Why
impose that on yourself?

T am reluctant to mention this, but later you will see the distinction between global, static, and local variables.
Global and static variables are automatically initialized to zero (or NULL), while local variables are not. But you
will suffer fewer painful debugging sessions if you ignore this fact and get into the habit of explicitly initializing
everything that needs initialization.

2The int type on most 64-bit systems is still 32 bits. Though this norm will no doubt change in the future,
the safe bet is to write code under the assumption that an int counts to 232,

13The double name is short for “double-precision floating-point number,” and the float thus has half the
precision and range of a double. Why floating point? The computer represents a real using a form comparable
to scientific notation: n x 10%, where n represents the number with the decimal point in a fixed location, and &
represents the location of the decimal point. Multiplying by ten doesn’t change the number n, it just causes the
decimal point to float to a different position.

The float type is especially not worth bothering with because the GSL’s matrices and vectors default to
holding doubles, and C’s floating-point functions internally operate on doubles. For example, the atof function
(ASCII text to floating-point number) actually returns a double.

14The exception are indices for counters and for loops, which are almost always i, j, or k.
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Arrays  Much of the art of describing the real world consists of building aggregates
of these few basic types into larger structures. The simplest such aggregate
is an array, which is simply a numbered list of items of the same type. To declare

a list of a hundred integers, you would use:

[int a_list[100];

Then, to refer to the items of the list, you would use the same square brack-

ets. For example, to assign the value seven to the last element of the array,
you would use: a_list [99]= 7;. Why is 99 the last element of the list? Because
the index is an offset from the first element. The first element is zero items away
from itself, soitis a_list [0], nota_list [1] (which is the second element). The
reasoning behind this system will become evident in the section on pointers.

2-D arrays simply require more indices—int a_2d_1ist[100] [100]. But there
are details in implementation that make 2-D arrays difficult to use in practice;
Chapter 4 will introduce the gsl_matrix, which provides many advantages over
the raw 2-D array.

Just as you can initialize a scalar with a value at declaration, you can do the same
with an array, e.g.:

[ double data[ ] = {2,4.,8,16,32,64};

You do not have to bother counting how many elements the array has; C is smart
enough to do this for you.

Write a program to create an array of 100 integers, and then fill the array
Q with the squares (so the_array[7] will hold 49). Then, print a message

2.4 like “7 squared is 49.” for each element of the array. Use the Hello World
program as a template from which to start.

The first element of the Fibonacci sequence is defined to be 0, the second
is defined to be 1, and then element n is defined to be the sum of elements
n — 1 and n — 2. Thus, the third element is O+1=1, the fourth is 1+1=2, the
fifth is 1+2=3, then 2+3=5, then 3+5=8, et cetera.

Q2. 5 The ratio of the nth element over the (n — 1)st element converges to a value
known as the golden ratio.

Demonstrate this convergence by producing a table of the first 20 elements
of the sequence and the ratio of the nth over the (n — 1)st element for each
n.
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DECLARING TYPES You can define your own types. For example, these lines will
first declare a new type, triplet, and then declare two such
triplets, tril and tri2:

typedef double triplet[3];
triplet tril, tri2;

This is primarily useful for designing complex data types that are collections of
many subelements, in conjunction with the struct keyword. For example:
typedef struct {
double real;
double imaginary;
} complex;

complex a, b;

You now have two variables of type complex and can now use a.real or b.ima-
ginary to refer to the appropriate constituents of these complex numbers.

Listing 2.3 repeats the birthday example, but stores each class size’s data in a
struct.

* Lines 4-7 define the structure: it will hold one variable indicating the probabil-
ity of somebody matching the first person’s birthday, and one variable giving the
probability that no two people share a birthday.

* Those lines only defined a type; line 11 declares a variable, days, which will be
of this type. Since there is a number in brackets after the name, this is an array of
bday_structs.

* Inline 12, the none_match element of days[1] is given a value. Lines 14 and 15
assign values to the elements of days[2] through days[40]. Having calculated
the values and stored them in an organized manner, it is easy for lines 18-20 to
print the values.

Initializing  As with an array, you can initialize most or all of the elements of a

struct to a value on the declaration line. The first option, comparable to

the array syntax above, is to remember the order of the struct’s elements and
make the assignments in that order. For example,

complex one = {1, 0};
complex pioverfour = {1, 1};
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#include <math.h>
#include <stdio.h>

typedef struct {
double one_match;
double none_match;
} bday_struct;

int main(){
int ct, upto = 40;
bday_struct days[upto+1];
days[1].none_match = 1;
for (ct=2; ct<=upto; ct ++){
days[ct].one_match = 1— pow(364/365., ct—1);
days[ct].none_match = days[ct—1].none_match * (1 — (ct—1)/365.);
}
printf("People\t Matches me\t Any match\n");
for (ct=2; ct<=upto; ct ++){
printf(" %i\t %.30\t\t %.3A\n", ct, days[ct].one_match, 1—days[ct].none_match);
}
return 0;

}

Listing 2.3 The birthday example (Listing 2.2) rewritten using a struct to hold each day’s data.
Online source: bdaystruct.c.

would initialize one to 1 + 0i and pioverfour to 1 + 1i. This is probably the
best way to initialize a struct where there are few elements and they have a well-
known order.

The other option is to use designated initializers, which are best defined by exam-
ple. The above two initializations are equivalent to:

complex one = {.real = 1};
complex pioverfour = {.imaginary = 1, .real = 1};

In the first case, the imaginary part is not given, so it is initialized to zero. In
the second case, the elements are out of order, which is not a problem. Designated
initializers will prove to be invaluable when dealing with structures like the apop_-
model, which has a large number of elements in no particular order.

Two final notes on designated initializers. They can also be used for arrays, and
they can be interspersed with unlabeled elements. The line

[int isprime[] = {[1]=1, 1, 1, [5]=1, [7]=1, [11]=1};



gsl_stats March 24, 2009

o 33

initializes an array from zero to eleven (the length is determined by the last ini-
tialized element), setting the elements whose index is a prime number to one. The
two ones with no label will go into the 2 and 3 slot, because their index will follow
sequentially after the last index given.

Structs are syntactically simple, so there is little to say about them, but much of
good programming goes in to designing structs that make sense and are a good
reflection of reality. This book will be filled with them, including both purpose-
built structures like the bday_struct and structures defined by libraries like the
GSL, such as the gs1_matrix mentioned above.

% TYPE CASTING There are a few minor complications when assigning a value of

one type to a variable of a different type. When you assign a

double value to an integer, such as int i = 3.2, everything after the decimal

point would be dropped. Also, the range of floats, doubles, and ints do not

necessarily match, so you may get unpredictable results with large numbers even
when there is nothing after the decimal point.

If you are confident that you want to assign a variable of one type to a variable of
another, then you can do so by putting the type to re-cast into in parentheses before
the variable name. For example, if ratio is a double, (int) ratio will cast it
to an integer. If you want to accept the truncation and assign a floating-point real
to an integer, say int n, then explicitly tell the compiler that you meant to do this
by making the cast yourself; e.g.,n = (int) ratio;.

Type casting solves the division-by-integers problem from the head of this chap-
ter. If num and den are both ints, then ratio = (double) num / den does the
division of a real by an integer, which will produce a real number as expected.

There are two other ways of getting the same effect: (num + 0.0) is an int plus
a double, which is a double. Then (num + 0.0)/den is division of a real by an
integer, which again works as expected (but don’t forget the parens). And as above,
if one of the numbers is a constant, then just add a decimal point, because 2 is an
int, while 2. is a floating-point real number.

Finally, note that when casting from double to int, numbers are truncated, not
rounded. As a lead-in to the discussion of functions, here is a function that uses
type casting to correctly round off numbers:'>

151n the real world, use rint (inmath.h) to round to integer: rounded_val = rint(unrounded_number).
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int round(double unrounded){
/+ Input a real number and output the number
rounded to the nearest integer. %/

if (unrounded > 0)

return (int) (unrounded + 0.5);
else

return (int) (unrounded — 0.5);

» All variables must be declared before the first use.

\

Until a variable is given a value, you know nothing about its value.

» You can assign an initial value to the variable on the declaration line,
suchas int i = 3;.

» Arrays are simply declared by including a size in brackets after the
variable name: int array[100] ;. Refer to the elements using an
offset, so the first element is array [0] and the last is array[99].

You can declare new types, including structures that amalgamate
simpler types: typedef struct {double length, waist; int
leg_ct;} pants;.

» After declaring a variable as a structure, say pants cutoffs;, refer
to structure elements using a dot: cutoffs.leg_ct = 1;.

» Aninteger divided by an integer is an integer: 9/4 == 2. By putting
a decimal after a whole number, it becomes a real number, and divi-
sion works as expected: 9./4 == 2.25.

2.3 FUNCTIONS The instruction take the inverse of the matrix is six words long,
but refers to a sequence of steps that typically require several
pages to fully describe.

Like many fields, mathematics progresses through the development of new vocab-
ulary like the phrase take the inverse. We can comprehensibly express a complex
statement like the variance is o?(X’X)~! because we didn’t need to write out
exactly how to do a squaring, a transposition (X’) and an inverse.

Similarly, most of the process of writing code is not about describing the pro-
cedures involved, but building a specialized vocabulary to make describing the
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procedures trivial. Adding new nouns to the vocabulary is a simple task, discussed
above using both basic nouns and structs that aggregate them to larger concepts.
This section covers functions, which are single verbs that encapsulate a larger pro-
cedure.

#include <math.h>
#include <stdio.h>

typedef struct {
double one_match;
double none_match;
} bday_struct;

int upto = 40;
void calculate_days(bday_struct days|[]);
void print_days(bday_struct daysl[]);

int main(){
bday_struct days[upto+1];
calculate_days(days);
print_days(days);
return 0;

}

void calculate_days(bday_struct days|[]){
int ct;
days[1].none_match = 1;
for (ct=2; ct<=upto; ct ++){
days[ct].one_match = 1— pow(364/365., ct—1);
days[ct].none_match = days[ct—1].none_match = (1 — (ct—1)/365.);

}

void print_days(bday_struct days[]){
int ct;
printf("People\t Matches me\t Any match\n");
for (ct=2; ct<=upto; ct ++){
printf(" %i\t %.30\t\t %.3f\n", ct, days[ct].one_match, 1—days[ct].none_match);
}
}

Listing 2.4 The birthday example broken into logical functions. Online source: bdayfns. c.

The second birthday example, Listing 2.3 can be hard to read, with its mess of mul-
tiple for loops. Listing 2.4 re-presents the program using one function to do the
math and one to print the output. The main function (lines 13—18) now describes
the procedure with great clarity: declare an array of bday_structs, calculate val-
ues for the days, print the values, and exit. The functions to which main refers—on
lines 20-27 and 29-35—are short, and so are easier to read than the long string of
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code in Listing 2.3. Simply put, the functions provide structure to what had been a
relatively unstructured mess.

Structure takes up space—you can see that this listing is more lines of code than
the unstructured version. But consider the format of the book you are reading right
now: it uses such stylistic features as paragraphs, chapter headings, and indenta-
tion, even though they take up space. Brevity is a good thing, which means that
it is typically worth the effort to minimize redundancy and search for simple and
brief algorithms. But brevity should never come at the cost of clarity. By eliminat-
ing intermediate variables and not using subfunctions, you can sometimes reduce
an entire program into a single line of code, but that one-liner may be virtually
impossible to debug, modify, or simply understand. No trees have to be killed to
add a few lines of white space or a few function headers to your on-screen code,
and the additional structure will save you time when dealing with your code later
on.

Functional form  Have a look at the function headers—the first line of each func-

tion, on lines 13, 20 and 29. In parens are the inputs to the func-

tion (aka the arguments), and they look like the familiar declarations from before.

The main function takes no arguments, while you will see that many functions take

several arguments, in which case the argument declarations are a comma-separated
list.

Or consider the function declaration for the round function above:

[int round (double unrounded)

If we ignore the argument list in parens, int round looks like a declaration as
well—and it is. It indicates that this function will return an integer value, that can
be used anywhere we need an integer. For example, you could assign the function
output to a variable, via int eight = round(8.3).

Declaring a function  You can declare the existence of a function separately from
the function itself, as per lines 10 and 11 of Listing 2.3. The
main function thus has an idea of what to expect when it comes across these func-
tions on lines 15 and 16, even though the functions themselves appear later. You
will see below that the compiler gets immense mileage out of the declaration of
functions, because it can compile main knowing only what the other functions take

in and return, leaving the inner workings as a black box.

% The void type If a function returns nothing, declare it as type void. Such func-
tions will be useful for side effects such as changing the values
of the inputs (like calculate_days) or printing data to the screen or an external
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file (like print_days). You can also have functions which take no inputs, so any
of the following are valid declarations for functions:

void do_something(double a);
double do_something_else(void);
double do_something_else();

The last two are equivalent, but you can’t forget the parentheses entirely—then the
compiler would think you are declaring a variable instead of a function.

Write a function with header void print_array(int in_arrayl[ ],
int array_size) that takes in an integer array and the size of the array,

Q2 6 and prints the array to the screen. Modify your square-printing program
from earlier to use this function for output.

How to write a program  Given a blank screen and a program to write, how should
you begin? Write an outline, based on function headers.

For example, in the birthday example, you could begin by writing the main func-
tion, which describes the broad outline of calculating probabilities and then print-
ing to the screen. In writing the outline, you will need to write down the inputs,
outputs, and intent of a number of functions. Then you can begin filling in each
function. When writing a function’s body, you can put the rest of the program out
of your mind and focus on making sure that the black box you are working on
does exactly what it should to produce the right output. When all of the functions
correctly do their job, and the main outline is fully fleshed out, you will have a
working program.

You want your black boxes to be entirely predictable and error-free, and the best
way to do this is to keep them small and autonomous. Flip through this book and
have a look at the structure of the longer sample programs. You will notice that
few functions run for more than about fifteen lines, especially after discounting
the introductory material about declaring variables and checking inputs.

FRAMES The manner in which the computer evaluates functions also abides by the

principle of encapsulating functions, focusing on the context of one func-

tion at a time. When a function is called, the computer creates a frame for that

function. Into that frame are placed any variables that are declared at the top of the

file in which the function is defined, including those in files that were #included
(see below); and copies of variables that are passed as arguments.

The function is then run, using the variables it has in that frame, blithely ignorant
of the rest of the program. It does its math, making a note of the return value it
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calculates (if any), and then destroys itself entirely, erasing all of the variables
created in the frame and copies of variables that had been put in to the frame.
Variables that were not passed as an argument but were put in the frame anyway
(global variables; see below) come out unscathed, as does the return value, which
is sent back to the function which had called the frame into existence.

#include <stdio.h> /printf
double globe=1; //a global variable.

double factorial (int a_c){
while (a_c){
globe *=a_c;
ac——;
}
return globe;

}

int main(void){
inta=10;
printf("%i factorial is %f.\n", a, factorial(a));
printf("a= %i\n", a);
printf("globe= %f\n", globe);
return 0;

Listing 2.5 A program to calculate factorials. Online source: callbyval.c.

One way to think about this is in terms of a stack of frames. The base of the stack
is always the function named main. For example, in the program in Listing 2.5, the
computer at first ignores the function factorial, instead starting its work at line
twelve, where it finds the main function. It creates a main frame and then starts
working, reading the declaration of a, and creating that variable in the main frame.
The global variable declared on line two is also put into the main frame.

Then, on line 14, it is told to print the value of factorial(a), which means that
it will have to evaluate that expression. This is a function call, which commands
the program to halt whatever it is doing and start working on evaluating the func-
tion factorial. So the system freezes the main frame, generates a frame for the
factorial function, and jumps to line four. Think of the new frame as being put
on top of the first, leaving only the topmost frame visible and active. The value
of a = 10 will be copied into a_c, the global variable globe will be put into the
frame, and the function does its math and returns the calculated value of globe.16

16Why is globe a double, when the factorial is always an integer? Because the double uses exponential
notation when necessary, so its range is much larger than that of the int, which does not. You could also try
using a long int (and replacing printf’s int placeholder %i with the long int placeholder %11i), but even that
fails after about a=31.
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Having returned a value, the factorial frame and its contents are discarded.
Since a copy of the value a = 10 was sent into the frame, a still has the value
10 when the function returns, even though the copy a_c was decremented to zero.

The main frame is now at the top of the stack, so it can pick up where it had left
off, printing the value of a and 10! to the screen, using the calls to the printf
function—which each create their own frames in turn. Finally, the main function
finishes its work, and its frame is destroyed, leaving an empty stack and a finished
program.

Call-by-value A common error is to forget that global variables are put in all func-
tion frames, but only copies of the variables in the function’s argu-
ment list are put in the frame.

When the factorial function is called, the system puts a copy of a into a_c, and
then the function modifies the copy, a_c. Meanwhile, globe is not a copy of itself,
but the real thing, so when it is changed inside the function, it changes globally.
This is why the output you got when you ran the program showed a=10, not a=0.

On the one hand, the factorial function could mangle a_c without affecting the
original; on the other hand, we sometimes want functions to change their inputs.
This may make global variables tempting to you, but resist. Section 2.6 will give a
better alternative (and explain why the bday_struct examples worked).

% Static variables  There is one exception to the rule that all local variables are
destroyed with their frame: you can define a static variable.
When the function’s frame is destroyed, the program makes a note of the value of
the static variable, and when the function is called again, the static variable will
start off with the same value as before. This provides continuity within a function,

but only that function knows about the variable.

Static variable declarations look just like other declarations but with the word
static before them. You can also put an initialization on the declaration line,
which will be taken into consideration only the first time the function is called.
Here is a sample function to enter data points into an array. It assumes that the
calling function knows the length of survey_data and does bounds-checking ac-
cordingly.

void add_a_point(double number, double survey_data[]){
static int count_so_far = 0;
survey_data[count_so_far] = number;
count_so_far++;
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The first time this function is called, count _so_far will be initialized at zero, the
number passed in will be put in survey_data[0], and count_so_far will be in-
cremented to one. The second time the function is called, the program will remem-
ber that count_so_far is one, and will thus put the second value in survey_-
datal[1], where we would want it to be.

% Themain function  All programs must have one and only one function named

main, which is where the program will begin executing—the

base of the stack of frames. The consistency checks are now with the operating

system that called the program, which will expect main to be declared in one of
two forms:

int main(void);
int main(int argc, char s*xargv);

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char ssargv)({

if (arge==1){
printf("Give me a command to run.\n");
return 1;

}

int return_value = system(argv[1]);

printf("The program returned %i.\n", return_value);

return return_value;

}

Listing 2.6 A shell is a program that is primarily intended for the running of other programs; this is
a very rudimentary one. Online source: simpleshell.c.

The second form will be discussed on page 206, but for now, Listing 2.6 provides
a quick example of the use of inputs to main. It uses C’s system function to call a
program. The usage of this program would be something like

[/sirnpleshell "ls /a_directory"

Conceptually, there is little difference between calling a function that you wrote
and calling the main function of a foreign program. In this case, the system func-
tion would call 1s, effectively putting the 1s program’s main function on top of
the current stack. More generally, you can think of your computer’s entire func-
tioning, from boot to shutdown, as the evaluation of a set of stacks of frames. At
boot, the system starts a C program named init, and every other program is a
child of init (or a child of a child of init, or a child of a child of a child, et cetera).
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There is also a fork function that generates a second stack that runs concurrently
with the parent, which is how a system runs several programs at once.

The system function will pass back the return value of the subprogram’s main.
The general custom is that if main returns O then all went well, while a positive
integer indicates a type of error.!” Because so many people are not concerned with
the return value of main, the current C standard assumes that main returns zero if
no indication is given otherwise, which is how most of the programs in this book
get away with not having a return statement in their main function.

SCOPE When one function is running, only the variables in that frame are visible: all

of the variables in the rest of the program are dormant and inaccessible. This

is a good thing, since you don’t want to have to always bear in mind the current

state of all the variables in your program, the GNU Scientific Library, the standard
library, and who knows what else.

A variable’s scope is the set of func-
tions that can see the variable. A
variable declared inside a function You can declare variables inside a loop.

is visible only inside that function. | ® while(...){int i;... } works as you expect,
If a variable is declared at the top of | declaring i only once. . .

a file, then that variable is global o e while(...){int i=1;... } will re-set i to one

o for every iteration of the loop.
the file, and any function in that file | ¢ £or (int i=0; i<max; i++){...} works, but

can see that variable. If declaredina | gcc may complain about it unless you specify the
header file (see below, including an | -std=c99 or -std=gnu99 flags for the compiler.
important caveat on page 50), then e A variable declared inside a bracketed block (or at
the header for a pair of curly braces, like a for loop)
is destroyed at the end of the bracketed code. This is
known as block scope. Function-level scope could be
thought of a special case of block scope.

The strategy behind deciding on the | Block scope is occasionally convenient—especially
scope of a variable is to keep it as | the for (int i;...) form—but bear in mind that
small as possible. you won’t be able to refer to a block-internal variable
after the loop ends.

Block scope

any function in a file that #includes
that header can see the variable.

* If only one function uses a variable, then by all means declare the variable inside
the function (possibly as a static variable).

* If a variable is used by only a few functions, then declare the variable in the main
function and pass it as an argument to the functions that use it.

* If a variable is used throughout a single file and is infrequently changed, then let it
be globally available throughout the file, by putting it at the top of the file, outside
all the function bodies.

17In the bash shell (the default on many POSIX systems), the return value from the last program run is stored
in $7, so echo $7 will print its value.
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Finally, if a variable is used throughout all parts of a program consisting of multiple
files, then declare it in a header file, so that it will be globally available in every
file which #includes that header file (see page 50).'3

There is often the temptation to declare every variable as global, and just not worry
about scope issues. This makes maintaining and writing the code difficult: are you
sure a tweak you made to the black box named function_a won’t change the
workings inside the black box named function_b? Next month, when you want
to use function_a in a new program you have just written, you will have to verify
that nothing in the rest of the program affects it, so what could have been a question
of just cutting and pasting a black box from one file to another has now become an
involved analysis of the original program.

» Good coding form involves breaking problems down into functions
and writing each function as an independent entity.

» The header of a function is of the form function_type
function_name(pl_type pl_name, p2_type p2_mname, ...).

» The computer evaluates each function as an independent entity. It
maintains a stack of frames, and all activity is only in the current
top frame.

» When a program starts, it will first build a frame for the function
named main; therefore a complete program must have one and only
one such function.

» Global variables are passed into a new frame, but only copies of pa-
rameters are passed in. If a variable is not in the frame, it is out of
scope and can not be accessed.

'8This is the appropriate time to answer a common intro-to-C question: What is the difference between C
and C++? There is much confusion due to the almost-compatible syntax and similar name—when explaining
the name C-double-plus, the language’s author references the Newspeak language used in George Orwell’s 71984
(Orwell, 1949; Stroustrup, 1986, p 4).

The key difference is that C++ adds a second scope paradigm on top of C’s file- and function-based scope:
object-oriented scope. In this system, functions are bound to objects, where an object is effectively a struct
holding several variables and functions. Variables that are private to the object are in scope only for functions
bound to the object, while those that are public are in scope whenever the object itself is in scope.

In C, think of one file as an object: all variables declared inside the file are private, and all those declared in a
header file are public. Only those functions that have a declaration in the header file can be called outside of the
file.

But the real difference between C and C++ is in philosophy: C++ is intended to allow for the mixing of
various styles of programming, of which object-oriented coding is one. C++ therefore includes a number of other
features, such as yet another type of scope called namespaces, templates and other tools for representing more
abstract structures, and a large standard library of templates. Thus, C represents a philosophy of keeping the
language as simple and unchanging as possible, even if it means passing up on useful additions; C++ represents
an all-inclusive philosophy, choosing additional features and conveniences over parsimony.
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2.4 THE DEBUGGER The debugger is somewhat mis-named. A better name

would perhaps be the interrogator, because it lets you

interact with and ask questions of your program: you can look at every line as it

is being executed, pause to check the value of variables, back up or jump ahead in

the program, or insert an extra command or two. The main use of these powers is

to find and fix bugs, but even when you are not actively debugging, you may still
want to run your program from inside the debugger.

The joy of segfaults  There are a few ways in which your program can break. For
example, if you attempt to calculate 1/0, there is not much
for the computer to do but halt.

Or, say that you have declared an array, int data[100] and you attempt to read
to data[1000]. This is a location somewhere in memory, 901 ints’ distance past
the end of the space allocated for the array. One possibility is that data[1000]
happens to fall on a space that has something that can be interpreted as an integer,
and the computer processes whatever junk is at that location as if nothing were
wrong. Or, data[1000] could point to an area of protected memory, such as the
memory that is being used for the operating system or your dissertation. In this
case, referring to data[1000] will halt the program with the greatest of haste,
before it destroys something valuable. This is a segmentation fault (segfault for
short), since you attempted to refer to memory outside of the segment that had
been allocated for your program. Below, in the section on pointers, you will en-
counter the null pointer, which by definition points to nothing. Mistakenly trying
to read the data a null pointer is pointing to halts the program with the complaint
attempting to dereference a null pointer.

A segfault is by far the clearest way for the computer to tell you that you mis-
coded something and need to fire up the debugger.'® It is much like refusing to
compile when you refer to an undeclared variable. If you declared receipts and
data[100], then setting reciepts or data[999] to a value is probably an error. A
language that saves you the trouble of making declarations and refuses to segfault
will just produce a new variable, expand the array, and thus insert errors into the
output that you may or may catch.

191n fact, you will find that the worst thing that can happen with an error like the above read of data[1000]
would be for the program to not segfault, but to continue with bad data and then break a hundred lines later. This
is rare, but when such an event becomes evident, you will need to use a memory debugger to find the error; see
page 214.
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The debugging process  To debug the program run_me under the debugger, type
gdb run_me at the command line. You will be given the
gdb prompt.°
You need to tell the compiler to include the names of the variables and functions
in the compiled file, by adding the -g flag on the compiler command line. For
example, instead of gcc hello.c, use gcc -g hello.c. If the debugger com-
plains that it can’t find any debugging symbols, then that means that you forgot
the -g switch. Because -g does not slow down the program but makes debugging
possible, you should use it every time you compile.

If you know the program will segfault or otherwise halt, then just start gdb as
above, run the program by typing run at gdb’s prompt, and wait for it to break.
When it does, you will be returned to gdb’s prompt, so you can interrogate the
program.

The first thing you will want to know is where you are in the program. You can
do this with the backtrace command, which you can abbreviate to either bt or
where. It will show you the stack of function calls that were pending when the
program stopped. The first frame is always main, where the program started. If
main called another function, then that will be the next frame, et cetera. Often,
your program will break somewhere in the internals of a piece of code you did
not write, such as in a call to mallopt. Ignore those. You did not find a bug in
mallopt. Find the topmost frame that is in the code that you wrote.

At this point, the best thing to do is look at a listing of your code in another window
and look at the line the debugger pointed out. Often, simply knowing which line
failed is enough to make the error painfully obvious.

If the error is still not evident, then go back to the debugger and look at the vari-
ables. You need to be aware of which frame you are working in, so you know
which set of variables you have at your disposal. You will default to the last frame
in the stack; to change to frame number three, give the command frame 3 (orf 3
for short). You can also traverse the stack via the up and down commands, where
up goes to a parent function and down goes to the child function.

Once you are in the frame you want, get information about the variables. You
can get a list of the local variables using info locals, or information about the
arguments to the function using info args (though the argument information is
already in the frame description). Or, you can print any variable that you think
may be in the frame using print var_name, or more briefly, p var_name. You

20 Asking your favorite search engine for gdb gui will turn up a number of graphical shells built around gdb.
Some are stand-alone programs like ddd and others are integrated into IDEs. They will not be discussed here
because they work exactly like gdb, except that they involve using the mouse more.

Also, GDB itself offers many conveniences not described here. See Stallman et al. (2002) for the full story.
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can print the value of any expression in scope: p sqrt(var) or p apop_show_-
matrix(m) will display the square root of var and the matrix m, provided the
variables and functions are available to the scope in which you are working. Or,
p stddev = sqrt(var) will set the variable stddev to the given value and print
the result. Generally, you can execute any line of C code that makes sense in the
given context via the print command.

GDB has a special syntax for viewing several elements of an array at once. If you
would like to see the first five elements of the array items, then use: p *items@5.

Breaking and stepping  If your program is doing things wrong but is not kind

enough to segfault, then you will need to find places to

halt the program yourself. Do this with the break command. For a program with

only one file of code, simply give a line number: break 35 will stop the program
just before line 35 is evaluated.

* For programs based on many files, you may need to specify a file name: break
file2.c:35.

* Or, you can specify a function name, and the debugger will stop at the first line
after the function’s header. E.g, break calculate_days.

* You may also want the program to break only under certain conditions, such as
when an iterator reaches 10,000. Le., break 35 if counter > 10000.2!

* All breakpoints are given a number, which you can list with info break. You can
delete break point number three with the command del 3.

Once you have set the breakpoints, run (or just r) will run the program until it
reaches a break point, and then you can apply the interrogation techniques above.
You may want to carefully step through from there:

* s will step to the next line to be evaluated, which could mean backing up in the
current function or going to a subfunction.

* next or n will step through the function (which may involve backtracking) but will
run without stopping in any subframes which may be created (i.e., if subfunctions
are called).

e until or u will keep going until you get to the next line in the function, so the
debugger will run through subfunctions and loops until forward progress is made
in the current function.

» ¢ will continue along until the next break point or the end of the program.?

21You can also set watchpoints, which tell gdb to watch a variable and halt if that variable changes, e.g., watch
myvar. Watchpoints are not as commonly used as breakpoints, and sometimes suffer from scope issues.

22 A mnemonic device for remembering which is which: s is the slowest means of stepping, n slightly faster,
u still faster, and c the fastest. In this order, they spell snuc, which is almost an English word with implications
of stepping slowly.
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* jump lineno will jump to the given line number, so you can repeat a line with
some variables tweaked, or skip over a few lines. Odd things will happen if you
jump out of the frame in which you are working, so use this only to jump around
a single function.

e return will exit the given frame and resume in the parent frame. You can give a
return value, like return wvar.

* Just hitting <enter> will repeat the last command, so you won’t have to keep
hitting n to step through many lines.

Break bdayfns.c (from Listing 2.4) and debug it.
* Modify line 13 from days[1] to days[-1].
* Recompile. Be sure to include the -g flag.
* Run the program and observe the output (if any).

QW * Start the debugger. If the program segfaulted, just type run and wait
for failure; otherwise, insert a breakpoint, break calculate_days,
and then run.

* Check the backtrace to see where you are on the stack. What evidence
can you find that things are not right?

A note on debugging strategy  Especially for numeric programs, the strategy in

debugging is to find the first point in the chain of

logic where things look askew. Below, you will see that your code can include

assertions that check that things have not gone astray, and the debugger’s break-

and-inspect system provides another means of searching for the earliest misstep.

But if there are no intermediate steps to be inspected, debugging becomes very
difficult.

Say you are writing out the roots of the quadratic equation, x = —btyb?—dac 322_4“0, and
erroneously code the first root as:

[ﬁrstroot = —b + sqrt(bxb — 4 xa xc)/2xa; //this is wrong.

There are basically no intermediate steps: you put in a, b, and c, and the system
spits out a bad value for firstroot. Now say that you instead wrote:

1| firstroot = —bj;
2 | firstroot += sqrt(bxb — 4:axc);
3 | firstroot = firstroot/2:a; //still wrong.
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If you know that the output is wrong, you can interrogate this sequence for clues
about the error. Say that a=2. As you step through, you find that the value of
firstroot does not change after line three runs. From there, the error is obvious:
the line should have been either firstroot = firstroot/(2*a) or firstroot
/= 2x*a. Such a chain of logic would be impossible with the one-line version of
the routine.?

However, for the typical reader, the second version is unattractively over-verbose.
A first draft of code should err on the side of inelegant verbosity and easy de-
bugability. You can then incrementally tighten the code as it earns your trust by
repeatedly producing correct results.

A triangular number is a number like 1 (-), 142=3 (. .), 142+3=6 ( ),

14+2+3+4=10 < o ) , et cetera. Fermat’s polygonal number theorem states

that any natural number can be expressed as the sum of at most three trian-
gular numbers. For example, 13 = 1043 and 19=15+3+1. Demonstrate this
via a program that finds up to three triangular numbers for every number
from 1 to 100.

* Write a function int triangular(int i) that takesin anindex and
returns the ¢th triangular number. E.g., triangular (5) would return
14+2+3+4+45=15. Write amain to test it.

* Use that function to write a function int find_next_-
triangular(int in) that returns the index of the smallest
@2 8 triangular number larger than its input. Modify main to test it.

* Write a function void find_triplet(int in, int out[]) that
takes in a number and puts three triangular numbers that sum to it in
out. Youcanuse find_next_triangular to find the largest triangu-
lar number to try, and then write three nested for loops to search the
range from zero to the maximum you found. If the loop-in-a-loop-
in-a-loop finds three numbers that sum to in, then the function can
return, thus cutting out of the loops.

* Finally, write a main function that first declares an array of three ints
that will be filled by find_triplet, and then runs a for loop that
calls find_triplet for each integer from 1 to 100 and prints the
result.

23The one-line version also has a second error; spotting it is left as a quick exercise for the reader.
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» The debugger will allow you to view intermediate results at any point
along a program’s execution.

» You can either wait for the program to segfault by itself, or use break
z to insert breakpoints.

» You can execute and print any expression or variable using p
variable.

» Once the program has stopped, use s, n, and u to step through the
program at various speeds.

2.5 COMPILING AND RUNNING The process of compiling program text into

machine-executable instructions relies hea-

vily on the system of frames. If function A calls function B, the compiler can

write down the instructions for creating and executing function A without knowing

anything about function B beyond its declaration. It will simply create a frame with

a series of instructions, one of which is a call to function B. Since the two frames

are always separate, the compiler can focus on creating one at a time, and then link
them later on.

What to type  To this point, you have been using a minimal command line to com-
pile programs, but you can specify much more. Say that we want the
compiler to

* include symbols for debugging (-g),

» warn us of all potential coding errors (-Wall),

* use the C99 and POSIX standards (-std=gnu99),

» compile using two source files, filel.c and file2.c, plus

* the sqlite3 and standard math library (-1sqlite3 -1m), and finally
* output the resulting program to a file named run_me (-o run_me).

You could specify all of this on one command line:

[gcc —g —Wall —std=gnu909 filel.c file2.c —Isqlite3 —Im —o run_me

This is a lot to type, so there is a separate program, make, which is designed to
facilitate compiling. After setting up a makefile to describe your project, you will
be able to simply type make instead of the mess above. You may benefit from
reading Appendix A at this point. Or, if you decide against using make, you could
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write yourself an alias in your shell, write a batch file, or use an IDE’s compilation
features.

Multiple windows also come in handy here: put your code in one window and
compile in another, so you can see the inevitable compilation errors and the source
code at the same time. Some text editors and IDEs even have features to compile
from within the program and then step you through the errors returned.

The components  Even though we refer to the process above as compilation, it ac-
tually embodies three separate programs: a preprocessor, a com-
piler, and a linker.?*

The three sub-programs embody the steps in developing a set of frames: the pre-
processor inserts header files declaring functions to be used, the compilation step
uses the declarations to convert C code into machine instructions about how to
build and execute a standalone frame, and the linking step locates all the disparate
frames, so the system knows where to look when a function call is made.

THE PREPROCESSING STEP The preprocessor does nothing but take text you wrote
and convert it into more text. There are a dozen types
of text substitutions the preprocessor can do, but its number one use is dumping the
contents of header files into your source files. When the preprocessor is processing

the file main. c and sees the lines

#include <gsl/gsl_matrix.h>
#include "a_file.h"

it finds the gsl_matrix.h and the a_file.h header files, and puts their entire
contents verbatim at that point in the file. You will never see the expansion (unless
you run gcc with the -E flag); the preprocessor just passes the expanded code
to the compiler. For example, the gs1l_matrix.h header file declares the gsl_-
matrix type and a few dozen functions that act on it, and the preprocessor inserts
those declarations into your program, so you can use the structure and its functions
as if you’d written them yourself.

The angle-bracket form, #include <gsl/gsl_matrix.h> indicates that the pre-
processor should look at a pre-specified include path for the header; use this for
the headers of library files, and see Appendix A for details. The #include "a_-
file.h" form searches the current directory for the header; use this for header
files you wrote yourself.?

24As a technical detail which you can generally ignore in practice, the preprocessor and compiler are typically
one program, and the linker is typically a separate program.

25The #include "a_file.h" form searches the include path as well, so you could actually use it for both
home-grown and system #includes. In practice, the two forms serve as an indication of where one can find the
given header file, so most authors use the <> form even though it is redundant.
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Many programming languages have
a way to declare variables as hav-

The Apophenia library provides a convenience ing global scope, meaning that ev-
header that aggregates almost every header you will ery function everywhere can make
likely be using. By placing use of the variable. Technically, C
#include <apop.h> has no such mechanism. Instead, the

at the top of your file, you should not need to in- b do i hat T will call
clude any of the other standard headers that one would est you can do 1s what 1 will ca

normally include in a program for numerical analysis file-global scope, meaning that ev-

Header aggregation

(stdio.h, stdlib.h, math.h, gsl_anything.h). ery function in a single file can see
This means that you could ignore the headers at the any variable declared above it in that
top of all of the code snippets in this chapter. file.

Of course, you will still need to include any headers
you have written, and if the compiler complains about

an undeclared function, then its header is evidently not Header files allow you to .Slmulate
included in apop.h. truly global scope, but with finer

control if you want it. If some vari-
ables should be global to your entire program, then create a file named globals.h,
and put all declarations in that file (but see below for details). By putting #include
"globals.h" at the top of every file in your project, all variables declared therein
are now project-global. If the variables of process. c are used in only one or two
other code files, then project-global scope is overkill: #include "process.h"
only in those few code files that need it.

In prior exercises, you wrote a program with one function to create an ar-
ray of numbers and their squares (page 30), and another function, print_-
array, to print those values (page 37).

* Move print_array to a new text file, utility_fns.c.

* Write the corresponding one-line file utility_fns.h with print_-
array’s header.

Q2-9 e #include "utility_fns.h" in the main square-printing program.
* Modify the square-calculating code to call print_array.

* Compile both files at once, e.g., gcc your_main.c utility_-
fns.c.

* Run the compiled program and verify that it does what it should.

% Variables in headers The system of putting file-scope variables in the base .c
file and global-scope variables in the .h file has one ugly
detail. A function declaration is merely advice to the compiler that your function
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has certain inputs and outputs, so when multiple files reread the declaration, the
program suffers only harmless redundancy. But a variable declaration is a com-
mand to the compiler to allocate space as listed. If head.h includes a declaration
int x;,and filel.c includes head.h, it will set aside an int’s worth of mem-
ory and name it x; if file2. ¢ includes the same header, it will also set aside some
memory named x. So which bit of memory are you referring to when you use x
later in your code?

C’s solution is the extern keyword, which tells the compiler that the declaration
that follows is not for memory allocation, but is purely informative. Simply putit in
front of the normal declaration: extern int x; extern long double y; will
both work. Then, in one and only one . c file, declare the variables themselves, e.g.,
int x; long double y = 7.0. Thus, all files that #include the header know
what to make of the variable x, so x’s scope is all files with the given header, but
the variable is allocated only once.

To summarize: function declarations and typedefs can go into a header file that
will be included in multiple . c files. Variables need to be declared as usual in one
and only one . c file, and if you want other . c files to see them, re-declare them in
a header file with the extern keyword.

THE COMPILATION STEP The compilation stage consists of taking each .c file

in turn and writing a machine-readable object file, so

filel.c will result in filel.o, and file2.c will compile to file2.0. These

object files are self-encapsulated files that include a table of all of the symbols de-

clared in that file (functions, variables, and types), and the actual machine code that

tells the computer how to allocate memory when it sees a variable and how to set

up and run a frame when it sees a function call. The preprocessor inserted declara-

tions for all external functions and variables, so the compiler can run consistency
checks as it goes.

The instructions for a function may include an instruction like at this point, create a
frame for gsl_matrix_add with these input variables, but executing that instruc-
tion does not require any knowledge of what gs1_matrix_add looks like—that is
a separate frame in which the current frame has no business meddling.

THE LINKING STEP After the compilation step, you will have on hand a number of
standalone frames. Some are in .o files that the compiler just

created, and some are in libraries elsewhere on the system. The linker collects all

of these elements into a single executable, so when one function’s instructions tell

the computer to go evaluate gs1_matrix_add, the computer will have no problem
locating and loading that function. Your primary interaction with the linker will be
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in telling it where to find libraries, via -1 commands on the compiler command
line (-1gsl -1lgslcblas -1lm, et cetera).

Note well that a library’s header file and its object file are separate entities—
meaning that there are two distinct ways in which a call to a library function can
go wrong. To include a function from the standard math library like sqrt, you will
need to (1) tell the preprocessor to include the header file via #include <math.h>
in the code, and (2) tell the linker to link to the math library via a -1 flag on the
command line, in this case -1m. Appendix A has more detail on how to debug your
#include statements and -1 flags.

 Finding libraries ~ An important part of the art of C programming is knowing how
to find libraries that will do your work for you, both online and
on your hard drive.

* The first library to know is the standard library. Being standard, this was installed
on your computer along with the compiler. If the documentation is not on your
hard drive (try info glibc), you can easily find it online. It is worth giving the
documentation a skim so you know which wheels to not reinvent.

* The GNU/UNESCO website (gnu.org) holds a hefty array of libraries, all of
which are free for download.

» sourceforge.net hosts on the order of 100,000 projects (of varying quality). To
be hosted on Sourceforge, a project must agree to make its code public, so you
may fold anything you find there into your own work.

* Finally, you can start writing your own library, since next month’s project will
probably have some overlap with the one you are working on now. Simply put all
of your functions relating to topic into a file named topic. c, and put the useful
declarations into a separate header file named topic.h. You already have a start
on creating a utility library from the exercise on page 50.

» Compilation is a three-step process. The first step consists of text ex-
pansions like replacing #include <header.h> with the entire con-
tents of header. h.

z » Therefore, put public variable declarations (with the extern key-
word) and function declarations in header files.

» The next step consists of compilation, in which each source (. c) file
is converted to an object (. o) file. >
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» Therefore, each source file should consist of a set of standalone func-
tions that depend only on the file’s contents and any declarations in-
z cluded via the headers.

» The final step is linking, in which references to functions in other
libraries or object files are reconciled.

» Therefore, you can find and use libraries of functions for any set of
tasks you can imagine.

2.6 POINTERS Pointers will change your life. If you have never dealt with

them before, you will spend some quantity of time puzzling over

them, wondering why anybody would need to bother with them. And then, when

you are finally comfortable with the difference between data and the location of
data, you will wonder how you ever wrote code without them.

Pointers embody the concept of the location of data—a concept with which we
deal all the time. I know the location http://nytimes.com, and expect thatif I go
to that location, I will get information about today’s events. I gave my colleagues
an email address years ago, and when they have new information, they send it
to that location. When so inclined, I can then check that same location for new
information. Some libraries are very regimented about where books are located, so
if you need a book on probability (Library of Congress classification QA273) the
librarian will tell you to go upstairs to the third bookshelf on the left. The librarian
did not have to know any information about probability, just the location of such
information.

Returning to the computer for a moment, when you declare int k, then the com-
puter is going to put k somewhere in memory. Perhaps with a microscope, you
could even find it: there on the third chip, two hundred transistors from the bot-
tom. You could point to it.

Lacking a finger with which to point, the computer will use an illegible hexadec-
imal location, but you will never have to deal with the hexadecimal directly, and
lose nothing by ignoring the implementation and thinking of pointers as just a very
precise finger, or a book’s call number.

The confusing part is that the location of data is itself data. After all, you could
write “QA273” on as slip of paper as easily as “P(A N B) = P(A|B)P(B).”
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Further, the location of information may itself have a location. Before computers
took over, there was a card catalog somewhere in the library, so you would have
to go to the card catalog—the place where location data is stored—and then look
up the location of your book. It sometimes happens that you arrive at the QA273
shelf and find a wood block with a message taped to it saying “oversized books are
at the end of the aisle.”

In these situations, we have no problem distinguishing between information that
is just the location of data and data itself. But in the computing context, there
is less to guide us. Is 8,049,588 just a large integer (data), or a memory address
(the location of data)??® C’s syntax will do little to clear up the confusion, since a
variable like k could be integer data or the location of integer data. But C uses the
location of data to solve a number of problems, key among them being function
calls that allow inputs to be modified and the implementation of arrays.

Call-by-address v call-by-value  First, a quick review of how functions are called:

when you call a function, the computer sets up

a separate frame for the function, and puts into that frame copies of all of the

variables that have been passed to the function. The function then does its thing

and produces a return value. Then, the entire frame is destroyed, including all of

the copies of variables therein. A copy of the return value gets sent back to the
main program, and that is all that remains of the defunct frame.

This setup, known as call-by-value since only values are passed to the function,
allows for a more stable implementation of the paradigm of standalone frames.
But if k is an array of a million doubles, then making a copy every time you call
a common function could take a noticeable amount of time. Also, you will often
want your function to change the variables that get sent to it.

Pointers fix these problems. The trick is that instead of sending the function a copy
of the variable, we send in a copy of the location of the variable: we copy the
book’s call number onto a slip of paper and hand that to the function. In Figure
2.7, the before picture shows the situation before the function call, in the main
program: there is a pointer to a location holding the number six. Then, in the during
picture, a function is called with the pointer as an argument, via a form like fn_-
call(pointer). There are now two fingers, original and copy, pointing to the
same spot, but the function knows only about the copy. Given its copy of a finger,
it is easy for the function to change the value pointed to to seven. When the function
returns, in the after picture, the copy of a finger is destroyed but the changes are
not undone. The original finger (which hasn’t changed and is pointing to the same
place it was always pointing to) will now be pointing to a modified value.

26This number is actually an address lifted from my debugger, where it is listed as 0x08049588. The 0Ox prefix
indicates that the number is represented in hexadecimal.



gsl_stats March 24, 2009

“a
= | 6 7 = | 7

Before During After

main frame sub frame main frame

Figure 2.7 Before, during, and after a function call that modifies a pointed-to value

Returning to C syntax, here are the rules for using pointers:

» To declare a pointer to an integer, use int *k.
* Outside the declarations, to refer to the integer being pointed to, use *k.

* QOutside the declarations, to refer to the pointer itself, use k.

The declaration int *p, i means that p will be a pointer to an integer and 1i is
an integer, but in a non-declaration line like i = *p, *p refers to the integer value
that p points to. There is actually a logical justification for the syntax, which I will
not present here because it tends to confuse more often than it clarifies. Instead,
just bear in mind that the star effectively means something different in declarations
than in non-declaration use.

To give another example, let us say that we are declaring a new pointer p2 that
will be initialized to point to the same address as p. Then the declaration would be
int *p2 = p, because p2 is being declared as a pointer, and p is being used as a
pointer.

The spaces around our stars do not matter, so use whichever of int *k, int* k, or
int * kyou like best. General custom prefers the first form, because it minimizes
the chance that you will write int * k, b (allocate a pointer named k and an int
named b) when you meant int *k, *b (allocate two pointers). The star also still
means multiply. There is never ambiguity, but if this bothers you, use parentheses.

Listing 2.8 shows a sample program that uses C’s pointer syntax to implement the
call-by-address trick from Figure 2.7.
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1 | #include <stdio.h> //printf
2 | #include <malloc.h> /malloc
3
4 | int globe=1; //a global variable.
5
6 | int factorial (int xa_c){
7 while (:xa_c){
8 globe #= xa_c;
9 (*a_c) ——;
10 }
11 return globe;
12 | }
13
14 | int main(void){
15 int xa = malloc(sizeof(int));
16 xa = 10;
17 printf("%i factorial ...", *a);
18 printf(" is %i.\n", factorial(a));
19 printf("sa= %i\n", *a);
20 printf("globe= %i\n", globe);
21 free(a);
22 return 0;
23|}

Listing 2.8 A version of the factorial program using call-by-address. Online source: callbyadd.c.

* In the main function, a is a pointer—the address of an integer—as indicated by the
star in its declaration on line 15; the malloc part is discussed below.

 To print the integer being pointed to, as on line 19, we use *a.

¢ The header for a function is a list of declarations, so on line 6, factorial (int
*xa_c) tells us that the function takes a pointer to an integer, which will be named
a_c.

* Thus, in non-declaration use like lines eight and nine, *a_c is an integer.

Now for the call-by-address trick, as per Figure 2.7. When the call to factorial is
made on Line 18, the pointer a gets passed in. The computer builds itself a frame,
using a copy of a—that is, a copy of the location of an integer. Both a (in the main
frame) and a_c (in the factorial frame) now point to the same piece of data.
Line 9, (*a_c)--, tells the computer to go to the address a_c and decrement the
value it finds there. When the frame is destroyed (and a_c goes with it), this will
not be undone: that slot of memory will still hold the decremented value. Because
xa—the integer a points to—has changed as a side effect to calling the factorial
function, you saw that line 19 printed *a=0 when you ran the program.
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Dealing with memory  Finally, we must contend with the pointer initialization on
line 15:

[int «a = malloc(sizeof(int));

Malloc, a function declared in stdlib.h, is short for memory allocate. By the
library metaphor, malloc builds bookshelves that will later hold data. Just as we
have no idea what is in an int variable before it is given a value, we have no idea
what address a points to until we initialize it. The function malloc () will do the
low-level work of finding a free slot of memory, claiming it so nothing else on the
computer uses it, and returning that address. The input to malloc is the quantity
of memory we need, which in this case is the size of one integer: sizeof (int).

There are actually three character-

o ) ) The ampersand
istics to a given pointer: the lo-

cation (where the finger is point-
ing), the type (here, int), and
the amount of memory which
has been reserved for the pointer
(sizeof (int) bytes—enough for
one integer). The location is up
to the computer—you should never
have to look at hexadecimal ad-

Every variable has an address, whether you declared
it as a pointer or not. The ampersand finds that ad-
dress: if count is an integer, then &count is a pointer
to an integer. The ampersand and star are inverses:
*(&count) == count, which may imply that they
are symmetric, but the star will appear much more of-
ten in your code than the ampersand, and an ampersand
will never appear in a declaration or a function header.
As a mnemonic, ampersand, and sign, and address of

dresses. But you need to bear in all begin with the letter A.

mind the type and size of your pointer. If you treat the data pointed to by an int
pointer as if it is pointing to a double, then the computer will read good data as
garbage, and if you read twenty variables from a space allocated for fifteen, then
the program will either read garbage or segfault.

By the way, int *k = 7 will fail—the initialization on the declaration line is for
the pointer, not the value the pointer holds. Given that k is a pointer to an integer,
all of these lines are correct:

int «xk = malloc(sizeof(int));
xk =7,
k = malloc(sizeof(int));

One convenience that will help with allocating pointers is calloc, which you can
read as clear and allocate: it will run malloc and return the appropriate address,
and will also set everything in that space to zero, running *k = 0 for you. Sample
usage:

[int xk = calloc(1, sizeof(int));



gsl_stats March 24, 2009

58 CHAPTER 2

The syntax requires that we explicitly state that we want one space, the size of
an integer. You need to give more information than malloc because the process
of putting a zero in a double pointer may be different from putting a zero in
a int pointer. Thus calloc requires two arguments: calloc(element_count,
sizeof (element_type)).

Finally, both allocation and de-allocation are now your responsibility. The de-
allocation comes simply by calling free (k) when you are done with the pointer
k. When the program ends, the operating system will free all memory; some peo-
ple free all pointers at the end of main as a point of good form, and some leave the
computer to do the freeing.

Write a function named swap that takes two pointers to int variables and
exchanges their values.

* First, write amain function that simply declares two ints (not point-
ers) first and second, gives them values, prints the values and re-
turns. Check that it compiles.

* Then, write a swap function that accepts two pointers, but does noth-
Q ing. That is, write out the header but let the body be { }.
2.10

* Call your empty function from main. Do you need to use &first
(as per the box on page 57), *first, or just first? Check that the
program still compiles.

* Finally, write the swap function itself. (Hint: include a local variable
int temp.) Add a printf to the end of main to make sure that your
function worked.

Modify your swap program so that the two variables in main are now point-
ers to ints.

e Add allocations via malloc, either in the declaration itself or on an-

Q2.11 other line.

* Which of &first, *first, or first will you need to send to swap
now? Do you need to modify the swap function itself?

Modify callbyadd. c so that the declaration on line 15 is for an integer, not

a pointer. That is, replace the current int *a = malloc(...); with int
Q2~12 a;. Make the necessary modifications to main to get the program running.
Do not modify the factorial function.
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A variable can hold the address of a location in memory.

By passing that address to a function, the function can modify that
location in memory, even though only copies of variables are passed
into functions.

A star in a declaration means the variable is a pointer, e.g., int *k.
A star in a non-declaration line indicates the data at the location to
which the pointer points, e.g., two_times = ¥k + *k.

The space to which a pointer is pointing needs to be
prepared using malloc, e.g., 1int *integer_address =
malloc(sizeof (int));.

When you are certain a pointer will not be used again, free it, e.g.,
free(integer_address).

2.7 ARRAYS AND OTHER POINTER You can use a pointer as an array: in-

TRICKS

stead of pointing to a single integer, for
example, you can point to the first of a

sequence of integers. Listing 2.9 shows some sample code to declare an array and
fill it with square numbers:

int main(){

#include <stdlib.h>
#include <stdio.h>

int array_length=1000;
int ssquares = malloc (array_length * sizeof(int));
for (int i=0; i < array_length; i++)
squares[i] =1 # i;

Listing 2.9 Allocate an array and fill it with squares. Online source: squares.c.

The syntax for declaring the array exactly matches that of allocating a single
pointer, except we needed to allocate a block of size 1000 * sizeof (int) in-
stead of just a single sizeof (int). Referring to an element of squares uses
identical syntax to the automatically-declared arrays at the beginning of this chap-
ter. Internally, both types of array are just a sequence of blocks of memory holding
a certain data type.
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The listing in squares. c is not very exciting, since it has no output. Add
Q2_13 a second for loop to print a table of squares to the screen, by printing the
index i and the value in the squares array at position i.

After the for loop, squares[7] holds a plain integer (49). Thus, you can
Q refer to that integer’s address by putting a & before it. Extend your version

2.14 | of squares.c to use your swap function to swap the values of squares[7]
and squares[8].

But despite their many similarities, arrays and pointers are not identical: one is
automatically allocated memory and the other is manually allocated. Given the
declarations

double a_thousand_doubles[1000];
// and
double xa_thousand_more_doubles = malloc(1000 : sizeof(double));

the first declares an automatically allocated array, just as int i is automatically al-
located, and therefore the allocation and de-allocation of the variable is the respon-
sibility of the compiler. The second allocates memory that will be at the location
a_thousand_doubles until you decide to free it.

In function arguments, you can interchange their syntaxes. These are equivalent:

int a_function(double =our_array);
/land
int a_function(double our_array[]);

But be careful: if your function frees an automatically allocated array passed in
from the parent, or assigns it a new value with malloc, then you are stepping on
C’s turf, and will get a segfault.

ARRAYS OF STRUCTS Before, when we used the struct for complex numbers,

we referred to its elements using a dot, such as a.real or
b.imaginary. For a pointer to a structure, use -> instead of a dot. Here are some
examples using the definition of the complex structure from page 31.

complex #ptr_to_cplx = malloc (sizeof(complex));
ptr_to_cplx—>real =2;

ptr_to_cplx—>imaginary = —2;

complex xarray_of_cplxes = malloc (30 * sizeof(complex));
array_of_cplexes[15]—>real = 3;
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If you get an error like request for member ‘real’ in something not a structure or
union then you are using a dot where you should be using -> or vice versa. Use
that feedback to understand what you misunderstood, then switch to the other and
try again.

REALLOCATING If you know how many items you will have in your array, then you

probably won’t bother with pointers, and will instead use the int

fixed_1list [300] declaration, so you can leave the memory allocation issues to

the computer. But if you try to put 301 elements in the list (which, you will recall,

means putting something in fixed_1ist [300]), then you will be using memory
that the machine hadn’t allocated for you—a segfault.

If you are not sure about the size of your array, then you will need to expand
the array as you go. Listing 2.10 is a program to find prime numbers, with a few
amusing tricks thrown in. Since we don’t know how many primes we will find, we
need to use realloc. The program runs until you hit <ctrl-c>, and then dumps
out the complete list to that point.

* Line 13: SIGINT is the signal that hitting <ctrl-c> sends to your program. By
default, it halts your program immediately, but line 13 tells the system to call the
one-line function on line 9 when it receives this signal. Thus, the while loop be-
ginning at line 14 will keep running until you hit <ctrl-c>; then the program will
continue to line 26.

* Lines 16-17: Check whether testme is evenly divisible by primes[i]. The sec-
ond element of the for loop, the run-while condition, includes several conditions
at once.

* Line 19: Computers in TV and movies always have fast-moving counters on the
screen giving the impression that something important is happening, and line 19
shows how it is done. The newline \n is actually two steps: a carriage return (go to
beginning of line) plus a line feed (go to next line). The \r character is a carriage
return with no line feed, so the current line will be rewritten at the next printf.
The ££1ush function tells the system to make sure that everything has been written
to the screen.

 Lines 20-24: Having found a prime number, we add it to the list, which is a three-
step process: reallocate the list to be one item larger, put the element in the last
space, and add one to the counter holding the size of the array. The first argument
to realloc is the pointer whose space needs resizing, and the second argument is
the new size. The first part of this new block of memory will be the primes array
so far, and the end will be an allocated but garbage-filled space ready for us to fill
with data.
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1 | #include <math.h>
2 | #include <stdio.h>
3 | #include <signal.h>
4 | #include <malloc.h>
5
6 | int ct =0, keepgoing = 1;
7 | int xprimes = NULL;
8
9 | void breakhere(){ keepgoing = 0; }
10
11 | int main(){
12 int i, testme = 2, isprime;
13 signal(SIGINT, breakhere);
14 while(keepgoing){
15 isprime = 1;
16 for (i=0; isprime && i< sqrt(testme) && i<ct; i++)
17 isprime = testme % primes|i];
18 if (isprime){
19 printf("%i \r", testme); flush(NULL);
20 primes = realloc(primes, sizeof(int):(ct+1));
21 primes[ct] = testme;
22 ct ++;
23 }
24 testme ++;
25 }
26 printf("\n");
27 for (i=0; i< ct; i++)
28 printf("%i\t", primes[i]);
29 printf("\n");
30| }

Listing 2.10 Find prime numbers and put them in an array. Online source: primes. c.

SOME COMMON FAUX PAS Figure 2.11 shows two errors in pointer handling. The

first step picks up from the second step of Figure 2.7:

a function has been called with a pointer as an argument. Then, the function frees

what the copy of a pointer is pointing to—and thus frees what the original finger

was pointing to. Next, it allocates new space, moving the copy of a finger to point

to a new location. But when the function finishes, depicted in the final step, the

copy of a pointer is destroyed, so there is no way to refer to the malloced space in

the main program. We now have a pointer in the main frame with no space and a
space with no pointer.

Returning to the library metaphor for a moment, the calling function wrote down
a call number on a slip of paper, handed it to the function, and the function then
went into the shelves and moved things around. But since the function has no
mechanism of telling the caller where it put things, the shelves are now a mess.

Listing 2.12 is a repeat of the prime-finding code, with the cute tricks removed and
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Figure 2.11 How to mess up your pointers

#include <math.h>
#include <stdio.h>
#include <malloc.h>

void add_a_prime(int addme, int =ct, int sxprimes){
sprimes = realloc(xprimes, sizeof(int)=(xct+1));
(primes)[*ct] = addme;
(xct)++;

}

int main(){
int ct =0, i, j, testme = 2, isprime, max = 1000;
int s«primes = NULL,;
for (j=0; j< max; j++){
isprime = 1;
for (i=0; isprime && i< sqrt(testme) && i<ct; i++)
isprime = testme % primes|[i];
if (isprime)
add_a_prime(testme, &ct, &primes);
testme ++;
}
for (i=0;i< ct; i++)
printf("%i\t", primes|i]);
printf("\n");

Listing 2.12 Find prime numbers and put them in an array. Online source: primes2.c.

the process of adding a prime relegated to a separate function (as it should be). The

wrong way to implement the function in lines 5-9 would be

void add_a_prime_incorrectly(int addme, int :ct, int xprimes){
primes = realloc(primes, sizeof(int):(:xct+1));
primes[xct] = addme;
(kCt)++;
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This commits the above faux pas of changing the value of the copy of primes and
allocating new data at the new location—but whatever called that function has no
idea about these changes in primes, and will keep on pointing to what may now
be an invalid location.

The correct method is shown in Listing 2.12. It passes a pointer to the primes
pointer—the location of the location of data. The calling function sends in the
location of the card catalog, and the called function can then revise the locations
listed in the card catalog when it makes changes on the shelves.

The syntax may seem confusing, but compare it to how ct is treated. Because the
function will modify it, line 19 sends in its location, &ct, and the function header
has an extra star: instead of int ct, it refers to the address int *ct. Similarly,
the function call sends in the array’s address, &primes, and the function adds a
star to the header, int **primes.

Kernighan & Pike (1999) point out that realloc can be slow, so you are
better off not calling it every time an array is extended. Instead, they suggest
that every time an array of length n is realloced, its size be doubled to 2n.
Thus, if an array will eventually have ten elements, it will be realloced
Q2~15 when adding the first, second, fourth, and eighth data points, for a total of
four reallocations instead of ten.
Rewrite the code in figure primes2 to implement this method of selective
reallocation.

» Arrays are internally represented as pointers. The int sarray[100]
form creates an automatically-allocated array, where the com-
puter creates and destroys the array; the int *harray=
malloc(sizeof (int) * 100); form creates a manually-allocated
array that is yours to allocate and deallocate.

» Refer to array elements in both cases using the same square-brackets
z notation, such as harray[14].

» Arrays of structs can be declared just as with arrays of basic variables.
Refer to the elements in a pointer-to-struct using ->.

\

You can expand a manually-allocated array using realloc.

» Just as copies of normal variables are passed to functions, copies of
pointers are sent in. Therefore, be careful when modifying a pointer
in a subfunction.
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STRINGS C’s handling of text strings is simple, elegant, unpleasant and

awkward. Although this book is oriented toward programs about

manipulating numbers rather than building Web pages or other such text, words

and phrases are inevitable in even the mathiest of programs. So this section will
cover the basics of how a system deals with variable-length text.

There are three approaches to dealing with C’s awkwardness regarding text. You
can (and should) skim the standard library documentation, to get to know what
functions are always available for the most common string operations. You can
use a higher-level library-provided data type for text, such as Glib’s GString type
(see Chapter 6 on Glib). Or, you can leave C entirely and do text manipulation
via a number of command-line tools or a text-focused language like Ruby or Perl
(see Appendix B). Nonetheless, all of these methods are based on C’s raw string-
handling at their core, and the raw C methods are always at hand, so it is worth
getting to know C’s string-handling even if you prefer higher-level methods.

C implements lines of text such as "hello'" as arrays of individual characters,
followed by an invisible null character, written as \0. That is, you may think of the
above single word as a shorthand for the array {’h’>, ’e’, ’1’, ’1’, ’0’,
’\0’}. This means that you have to think in terms of arrays when dealing with
strings of characters.

The first implication of the elegant use of arrays to represent text is that your
expectations about assignment won’t work. Here are some examples:

char hello[30];

char hello2[] = "Hi.";

hello = hello2; //This is probably not what you meant.
hello = "Hi there"; //Nor is this.

Line one shows that strings are declared with array-style declarations, either of the
static form here or viamalloc.

Line two shows that, as with arrays of integers, we can specify a list to put in to
the array when we initialize the array, but not later.

But it is a common error to think that line three will copy the text "Hi." into
hello, but as with pointers to integers, the actual function of third line is a pointer
operation: instead of copying the data pointed to by hello2 to the location pointed
to by hello, it simply copies the location of hello2. When you change the text
at one pointer later on, the other (now pointing to the same location) will change
as well. Along a similar vein, line four also does not behave as you may expect.?’

27Line four will compile, because the string "Hi there." is held in memory somewhere, so the pointer
hello can point to it. However, a pointer to literal text is a const pointer, meaning that the first time you try to
change hello, the program will crash.
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Instead, there are a series of functions that take in strings to copy and otherwise
handle strings.

strlen There are two lengths associated with a string pointer: the first is the space
malloced for the pointer, and the second is the number of characters until
the string-terminating >\0’ character appears. Size of free memory is your re-
sponsibility, but strlen(your_string) will return the number of text characters

in your_string.

strncpy  Continuing the above example, this is the right way to copy data into
hello:

#include <string.h>
strnepy(hello, "Hi there.", 30);
strnepy (hello, hello2, 30);

The third argument is the total space malloced to hello, not strlen(hello).

strncat  Rather than overwriting one string with another, you can also append (i.e.,
concatenate) one string to another, using

[strncat(base_string, addme, freespace);

For example, strncat (hello, hello2, 30) will leave "Hi there. Hello."
in hello.

The key problem with pointers-as-strings is that editing a string often be-
comes a three-step problem: measure the length the string will have after
being changed, then realloc the string to the appropriate size, then finally
make the change to the string.
Write a function astrncpy(char **base, char *copyme), that will
copy copyme to *base. Internally, it will use strlen, realloc, and
Q2~16 strncpy to execute the three steps of string extension. All of the above dis-
cussion regarding re-pointing pointers inside a function applies here, which
is why the function needs to take in a pointer-to-pointer as its first argument.
Once this function is working, write a function astrncat that executes the
same procedure for string concatenation. After you’ve tested both functions,
add them to your library of utilities.
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snprintf  The snprintf function works just like the printf statements above, but
prints its output to a string instead of the screen.?® The fill-in-the-blanks
syntax for printf works in exactly the same manner with strings.

#include <string.h>

int string_length = 1000;

char write_to_me[string_length];

char name[] = "Steven";

int position = 3;

snprintf(write_to_me, string_length, "person %s is number %i in line\n", name, position);

However, the three-step process of measuring the new string, calling realloc,
and then finally modifying the string is especially painful for snprintf, because
it is hard to know how long the printf-style format specifier will be after all its
blanks are filled in. One way to make sure there is enough room for adding more
text would be to simply allocate an absurd amount of space for each string, like
just under a megabyte of memory: char hello[1000000]. You won’t notice the
wasted memory on a modern computer, but this method is also error-prone: what
if you have a brilliant idea about a for loop that will add a little text for each of a
million data points into the string?

asprintf If you are using the GNU C library, BSD’s standard C library, or Apo-

phenia, you could use asprintf, which allocates a string that is just big

enough to handle the inputs, and then runs snprintf. Here is a simple example,
with no memory allocation in sight, to print to 1ine.

char xline;
asprintf(&line, "%s is number %i in line.", "Steven", 7);

Once again, because asprintf will probably move line in memory, we need to
send the location of the pointer, not the pointer itself.

You can comfortably put asprintf into a for loop without worrying about over-
flow. Here is a snippet to write a string that counts to a hundred:?’

28The other nice feature of snprintf is that it is more secure: other common functions like strcpy and
sprintf do not check the length of the input, and so make it easy for you to inadvertently overwrite important
bits of memory with the input string, including the location of the next instruction to be executed. Unsafe string-
handling functions are thus a common security risk, allowing the execution of malicious code.
2Because asprintf does not free the current space taken up by string before reallocating the new version,
this for loop is a memory leak. In many situations it isn’t enough of a leak to matter, but if it is, you will need to
use:
for (int i =0; i< 100; i++){
char *tmp = string;
asprintf(&string, "Us %i", string, 1i);
free(tmp);



gsl_stats March 24, 2009

68 CHAPTER 2

char =string = NULL;
asprintf(&string, ""); /initialize to empty, non—NULL string.
for (int i =0; i< 100; i++)

asprintf(&string, "%s %i", string, 1);

If you don’t have asprintf on hand, you can hack your way through by guess-
ing the final length of the filled-in string and running the measure/realloc/write
procedure directly, e.g.:°

char =string = NULL;

char int_as_string[10000];

for (int i =0; i< 100; i++){
int newlen = strlen(string) + 10000;
string = realloc(string, newlen);
snprintf(int_as_string, 10000, " %i", 1);
strncat(string, int_as_string, newlen);

¢ The C standard defines sizeof (char)==1, so it is safe to write newlen in the
place of sizeof (char)*newlen.’!

See Listing 3.7, page 112, for another example of extending a string inside a loop.

Modify primes2.c to write to a string named primes_so_far rather than
Q2_17 printing to the screen. As the last step of the program, printf (primes_-
so_far).

Modify the program in the last exercise to print only primes whose last digit
Q is seven. (Hint: if you have written a number to pstring, you can compare

2.18 | the last element in pstring’s array of characters to the single character
272)

strcmp Because strings are arrays, the form if ("Joe"=="Jane") does not make
sense. Instead, the strcmp function goes through the two arrays of charac-
ters you input, and determines character-by-character whether they are equal.

You are encouraged to not use strcmp. If s1 and s2 are identical strings, then
strcmp(sl, s2)==0; if they are different, then strcmp(s1, s2)!=0. There is

30Tt would be nice if we could use snprintf(string, newlen, "¥s %i", string, i), but using
snprintf to insert string into string behaves erratically. This is one more reason to find a system with
asprintf.

31ISO C standard, Committee Draft, ISO/IEC 9899:TC2, §6.5.3.4, par 3.
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a rationale for this: the strcmp function effectively subtracts one string from the
other, so when they are equal, then the difference is zero; when they are not equal,
the difference is nonzero. But the great majority of humans read if (strcmp(si,
s2)) to mean ‘if s1 and s2 are the same, do the following.” To translate that En-
glish sentiment into C, you would need to use if (!strcmp(sl, s2)). Experi-
enced programmers the world over regularly get this wrong.

Add a function to your library of convenience functions to compare two
@2 1o | strings and return a nonzero value if the strings are identical, and zero if the
strings are not identical. Feel free to use strcmp internally.

» Strings are actually arrays of chars, so you must think in pointer
terms when dealing with them.

z » There are a number of functions that facilitate copying, adding to, or
printing to strings, but before you can use them, you need to know
how long the string will be after the edit.

2.9 x ERRORS The compiler will warn you of syntax errors, and you have seen

how the debugger will help you find runtime errors, but the best

approach to errors is to make sure they never happen. This section presents a few

methods to make your code more robust and reliable. They dovetail with the notes

above about writing one function at a time and making sure that function does its
task well.

TESTING THE INPUTS Here is a simple function to take the mean of an input ar-
ray.*
double find_means(double «in, int length) {
double mean = in[0];
for (int i=1; i < length, i++)
mean += in[i];
return mean/length;

What happens if the user calls the function with a NULL pointer? It crashes. What
happens if length==0? It crashes. You would have an easy enough time pulling

32Normally, we’d just assign double mean=0 at first and loop beginning with i=0; I used this slightly odd
initialization for the sake of the example. How would the two approaches differ for a zero-length array?
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out the debugger and drilling down to the point where you sent in bad values, but
it would be easier if the program told you when there was an error.

Below is a version of find_means that will save you trips to the debugger. It
introduces a new member of the printf family: fprintf, which prints to files
and streams. Streams are discussed further in Appendix B; for now it suffices to
note that writing to the stderr stream with fprintf is the appropriate means of
displaying errors.

double find_means(double «in, int length){

if (in==NULL){
fprintf(stderr, "You sent a NULL pointer to find_means.\n");
return NAN;

}

if (length<=0){
fprintf(stderr, "You sent an invalid length to find_means.\n");
return NAN;

}

double mean = in[0];

for (int i=1; i < length, i++)
mean += in[i];

return mean/length;

This took more typing, and does not display the brevity that mathematicians ad-
mire, but it gains in clarity and usability. Listing conditions on the inputs provides
a touch of additional documentation on what the function expects and thus what it
will do. If you misuse the function, you will know the error in a heartbeat.

The && and || are perfect for inserting quick tests, because the left-hand side can
test for validity and the right-hand side will execute only if the validity test passes.
For example, let us say that the user gives us a list of element indexes, and we will
add them to a counter only if the chosen array elements are even. The quick way
to do this is to simply use the % operator:

if (!(array[i] % 2))
evens += array/[i];
But if the array index is invalid, this will break. So, we can add tests before testing

for evenness:

if (i >0 && i < array_len && !(array[i]%2))
evens += array/[i];
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If i is out of bounds, then the program just throws i out and moves on. When
failing silently is OK, these types of tests are perfect; when the system should
complain loudly when it encounters a failure, then move on to the next tool in our
list: assert.

assert The assert macro makes a claim, and if the claim is false, the program

halts at that point. This can be used for both mathematical assertions and for

housekeeping like checking for NULL pointers. Here is the above input-checking
function rewritten using assert:

#include <assert.h>

double find_means(double «in, int length){
assert (in!=NULL);
assert (length>0);
double mean = in[0];
for (int i=1; i < length, i++)
mean += in[i];
return mean/length;

If your assertion fails, then the program will halt, and a notice of the failure will
print to the screen. On a gcc-based system, the error message would look some-
thing like

assert: your_program.c:4: find_means: Assertion ‘length > 0’ failed.
Aborted

Some people comment out the assertions when they feel the program is adequately
debugged, but this typically saves no time, and defeats the purpose of having the
assertions to begin with—are you sure you’ll never find another bug? If you’d like
to compare timing with and without assertions, the -DNDEBUG flag to the compiler
(just add it to the command line) will compile the program with all the assert
statements skipped over.

The method above for taking a mean runs risks of overflow errors: for an
array of a million elements, mean will grow to a million times the average
value before being divided down to its natural scale.

Rewrite the function so that it calculates an incremental mean as a function
Q 590 of the mean to date and the next element. Given the sequence x1, x2, T3, .. .,
the first mean would be 1 = x1, the second would be o = % + %, the
third would be 3 = 2% + %, et cetera. Be sure to make the appropriate
assertions about the inputs. For a solution, see the GSL gs1_vector_mean
function, or the code in apop_db_sqlite.c.
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TEST FUNCTIONS The best way to know whether a function is working correctly is
to test it, via a separate function whose sole purpose is to test the
main function.

A good test function tries to cover both the obvious and strange possibilities: what
if the vector is only one element, or has unexpected values? Do the corner cases,
such as when the input counter is zero or already at the maximum, cause the
function to fail? It may also be worth checking that the absolutely wrong inputs,
like find_means (array4, -3) will fail appropriately. Here is a function to run
find_means through its paces:

void test_find_means(){

double array1[] = {1,2,3,4};

int length = 4;
assert(find_means(array1, length) == 2.5);

double array2[] = {INFINITY,2,3,4};
assert(find_means(array2, length) == INFINITY);

double array3[] = {—9,2,3,4};
assert(find_means(array3, length) == 0);

double array4[] = {2.26};
assert(find_means(array4, 1) == 2.26);

Writing test functions for numerical computing can be significantly harder than
writing them for general computing, but this is no excuse for skipping the testing
stage. Say you had to write a function to invert a ten-by-ten matrix. It would take
a tall heap of scrap paper to manually check the answer for the typical matrix. But
you do know the inverse of the identity matrix (itself), and the inverse of the zero
matrix (NaN). You know that X- X~ = 1 for any X where X! is defined. Errors
may still slip through tests that only look at broad properties and special cases, but
that may be the best you can do with an especially ornery computation, and such
simple diagnostics can still find a surprising number of errors.

Some programmers actually write the test functions first. This is one more manner
of writing an outline before filling in the details. Write a comment block explaining
what the function will do, then write a test program that gives examples of what
the comment block described in prose. Finally, write the actual function. When the
function passes the tests, you are done.

Once you have a few test functions, you can run them all at once, via a supple-
mentary test program. Right now, it would be a short program that just calls the
test_find_means function, but as you write more functions and their tests, they
can be added to the program as appropriate. Then, when you add another test, you
will re-run all your old tests at the same time. Peace of mind will ensue. For ulti-
mate peace of mind, you can call your test functions at the beginning of your main



C

gsl_stats March 24, 2009

73

analysis. They should take only a microsecond to run, and if one ever fails, it will
be much easier to debug than if the function failed over the course of the main
routine.

Qz.m

Qz.zz

Write a test function for the incremental mean program you’d written above.
Did your function pass on the first try?

Some programmers (Donald Knuth is the most famous example) keep a bug
log listing errors they have committed. If your function didn’t pass its test
the first time, you now have your first entry for your bug log.

» Before you have even written a function, you will have expectations
about how it will behave; express those in a set of tests that the func-
tion will have to pass.

» You also have expectations about your function’s behavior at run
time, so assert your expectations to ensure that they are met.

This chapter stuck to the standard library, which is installed by default with
any C compiler. The remainder of the book will rely on a number of li-
braries that are commonly available but are not part of the POSIX standard,
and must therefore be installed separately, including Apophenia, the GNU
Scientific Library, and SQLite. If you are writing simulations, you will need
the GLib library for the data structures presented in Chapter 6.

Now that you have compiled a number of programs and C source is not so
foreign, this is a good time to install these auxiliary libraries. Most will be
available via your package manager, and some may have to be installed from
C source code. See the online appendix (linked from the book’s web site,
http://press.princeton.edu/titles/8706.html) for notes on find-
ing and installing these packages, and Appendix A for notes on preparing
your environment.
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There is a way between voice and presence
Where information flows.

—Rumi (2004, p 32)

Structured Query Language (SQL') is a specialized language that deals only with
the flow of information. Some things, like joining together multiple data sets, are
a pain using traditional techniques of matrix manipulation, but are an easy query
in a database language. Meanwhile, operations like matrix multiplication or inver-
sion just can not be done via SQL queries. With both database tables and C-side
matrices, your data analysis technique will be unstoppable.

As a broad rule, try to do data manipulation, like pulling subsets from the data
or merging together multiple data tables, using SQL. Then, as a last step, pull the
perfectly formatted data into an in-memory matrix and do the statistical analysis.

Because SQL is a specialized language that deals only with information flows, it
is not nearly as complex as C. Here is some valid SQL: select age, gender,
year from survey. That’s almost proper English. It goes downhill from there in
terms of properness, but at its worst, it is still not difficult to look at an SQL query
and have some idea of what the rows and columns of the output table will look
like.

'Some people pronounce SQL as sequel and some as ess queue ell. The official ISO/IEC standard has no
comment on which is correct.



gsl_stats March 24, 2009

DATABASES 75

Like C, SQL is merely a language, and it is left to the programmers of the world
to write code that can parse SQL and return data from SQL queries. Just as this
book leans toward gcc to interpret C code, it recommends the SQLite library, by
D Richard Hipp, to interpret code written in SQL. SQLite provides a library of
functions that parse SQL queries and uses those instructions to read and write a
specific format of file [see binary trees in Chapter 6]. Any program that uses the
SQLite function library is reading and writing the same file format, so SQLite files
can be traded among dozens of programs.

As with C utilities, the only problem is selecting which SQLite database viewer
to use among the many options. The SQLite library comes with a command-line
program, sqlite3, but there are many other alternatives that are more reminiscent
of the table view in the standard stats package or spreadsheet; ask your search
engine for sqlite browser or sqlite GUI. These programs will give you immediate
feedback about any queries you input, and will let you verify that the tables you
are creating via C code are as you had expected.

Why is SQLite /ite? Because most SQL-oriented databases are designed to be used
by multiple users, such as a firm’s customers and employees. With multiple users
come issues of simultaneous access and security, that add complications on top of
the basic process of querying data. SQLite is designed to be used by one user at
a time, which is exactly right for the typical data analysis project. If you hope to
use another database system, you will need to learn the (typically vendor-specific)
commands for locking and permissions.

This chapter will primarily consist of an overview of SQL, with which you can
follow along using any of the above tools. Section 3.5 will describe the Apophenia
library functions that facilitate using an SQL database such as SQLite or mySQL
from within a C program.

Check that both the SQLite executable and development libraries are cor-
rectly installed. In the online code supplement, you will find an SQLite-
formatted database named data-wb.db listing the 2005 GDP and popula-
tion for the countries of the world. Verify that you can open the database
using one of the above tools (e.g., sqlite3 data-wb.db from the com-

Qs.l mand prompt), and that you can execute and view the results of the query

select * from pop;.

Once you have a working query interpreter, you can follow along with the
discussion in this chapter. For your cutting and pasting convenience, most
of the queries in this chapter are also in the queries file in the online code
supplement.
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Data format A database holds one or more tables. Each column in a table repre-

sents a distinct variable. For example, a health survey would include

columns such as subject’s age, weight, and height. Expect the units to be different
from column to column.

Each row in a table typically represents one observation. For example, in a survey,
each row would be data about a single person. There is no mechanism in SQL for
naming a row, although it is common enough to have a plain column named row_-
name, or another identifier such as social_security_no that serves this purpose.

The asymmetry between columns and rows will be very evident in the syntax for
SQL below. You will select columns using the column name, and there is no real
mechanism for selecting an arbitrary subset of columns; you will select rows by
their characteristics, and there is no real mechanism to select rows by name.2

Your C-side matrices will generally be expected to have a similar format; see page
147 for further notes.

Most of the world’s data sets are already in this format. If your data set is not,
your best bet is to convert it rather than fighting SQL’s design; see the notes on
crosstabs, page 101, for tips on converting from the most common alternative data
format.

3.1 BASIC QUERIES SQL’s greatest strength is selecting subsets of a data set.

If you need all of the data for those countries in the World

Bank data set (data-wb.db) with populations under 50 million, you can ask for it
thusly:

select =
from pop
where population <= 50;

You can read this like English (once you know that * means ‘all columns’): it will
find all of the rows in a table named pop where population in that row is less
than or equal to 50, and return all the columns for those rows.

21f there is a row_name variable, then you could select rows where row_name = ’Joe’, but that is simply
selecting rows with the characteristic of having a row_name variable whose value is >Joe?. That is, column
names are bona fide names; row names are just data.
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Generally, the select statement
gives a list of columns that the
output table will have; the from
clause declares where the source
data comes from; and the where
clause lists restrictions on the rows
to be output. And that’s it. Every
query you run will have these three
parts in this order: column specifi-
cation, data source, row specifica-
tion.? This simple means of specify-
ing rows, columns, and source data
allows for a huge range of possibili-
ties.

March 24, 2009

77

Commas and semicolons

In SQL, semicolons are terminators for a given com-
mand. You can send two SQL commands at once,
each ending with a semicolon. Many SQLite-based
programs will forgive you for omitting the final semi-
colon.

Commas are separators, meaning that the last ele-
ment in a comma-separated list must not have a comma
after it. For example, if you write a query like select
country, pop, from population then you will
get an error like “syntax error near from” which is re-
ferring to the comma just before from that is not sepa-
rating two columns.

The select clause will specify the columns of the table that will be output.

The easiest list is *, which means ‘all the columns’. Other options:

Explicitly list the columns:
select country, population

Explicitly mention the table(s) from which you are pulling data:
select pop.population, gdp.country
This is unnecessary now, but will become essential when dealing with multiple

tables below.
Rename the output columns:

select pop.country as country, gdp as gdp_in_millions_usd
If you do not alias pop. country as country, then you will need to use the name
pop\.country in future queries, which is a bit annoying.

Generate your own new columns. For example, to convert GDP in dollars to GDP
in British pounds using the conversion rate as of this writing:

select country, gdp*0.506 as gdp_in_GBP

The as gdp_in_GBP subclause is again more-or-less essential if you hope to refer

to this column in the future.

From  The from clause specifies the tables from which you will be pulling data. The

simplest case is a single table: from data_tab, but you can specify as many
tables as necessary: from data_tabl, data_tab2.

You can alias the tables, for easier reference. The clause from data_tabl di,

3You may have no row restrictions, in which case your query will just have the first two parts and a null third

part.
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data_tab2 d2 gives short names to both tables, which can be used for lines like

select dl.age, d2.height.

Another option is to take data from subqueries; see below.

Borrowing C’s annoyances

SQL accepts C-style block comments of the form
/* ... */.1It has the same trouble with nested block
comments as C (see p 25). With one-line comments,
everything after two dashes, --, is ignored, compara-
ble to the two slashes, //, in C. [mySQL users will
need two dashes and a space: -- .]

Also following C’s lead, dividing two integers
produces an integer, not the real number we hu-
mans expect. Thus, rather than calculating, say,
countl/count?2, cast one of the columns to a real
number by adding 0.0: (count1+0.0)/count2 will
return the real number it should. The add-zero trick
also works to turn the string "1990" into the number
1990. [SQL has a cast keyword, but it is much easier
to just use the trick of adding 0.0.]

Where

Aliasing is generally optional but
convenient, but one case where it
is necessary arises when you are
joining a table to itself. For now,
simply note the syntax: from data
tl, data t2 will let you refer to
the data table as if it were two en-
tirely independent tables.

Notice, by the way, that when we
aliased something in the select
section, the form was select
long_col_description as lcd,
while in the from section there
is no as: from long_file_name
1fn.*

The where clause is your chance to pick out only those rows that interest

you. With no where clause, the query will return one line for every line
in your original table (and the columns returned will match those you specified in
the select clause). For example, try select 1 from gdp using the data-wb.db
database.

You can use the Boolean operators you know and love as usual: where ((dl.age
> 13) or (d2.height >= 175)) and (dl.weight = 70). SQL does not re-
ally do assignments to variables, so the clause (d1.weight = 70) is a test for
equality, not an assignment. SQLite is easygoing, and will also accept the C-format
(d1.weight == 70);other SQL parsers (like mySQL) are less forgiving and con-
sider the double-equals to be an error.

You can select based on text the same way you select on a number, such as where
country = ’United States’. Any string that is not an SQL keyword or the
name of a table or column must be in ‘single-tick’ quotation marks.’

4The as is actually optional in the select clause, but it improves readability.

5 Again, SQLite is forgiving, and will also accept C-style “double-tick” quotation marks. However, it is
beneficial that SQL uses single-ticks while C uses double-ticks, because snprintf(q, 100, "select *
where country = ’Qatar’") requires no unsightly backslashes, while double-tick quotation marks do:
snprintf(q, 100, "select * where country = \"Qatar\"").



gsl_stats March 24, 2009

DATABASES 79

Case matters: >United States’ !'= ’united states’. However, there is an
out should you need to be case-insensitive: the 1ike keyword. The clause where
country like ’united states’ will match the fully-capitalized country name
as well as the lower case version. The 1ike keyword will even accept two wild
cards: _ will match any single character, and % will match any set of characters.
Both country like ’unitiates’ and country like ’united_states’ will
match ’United States’.

The where clause refers to the root data, not the output, meaning that you can
readily refer to columns that you do not mention in the select clause.

Use a where clause and the population table to find the current popula-
@3 9 tion of your home country. Once you know this amount, select all of the
countries that are more populous than your country.

Generalizing from equality and inequalities, you may want a group of elements or
a range. For this, there are the in and between keywords. Say that we want only
the United States and China in our output. Then we would ask only for columns
where the country name is in that short list:

select =
from gdp
where country in ("United States", "China")

The in keyword typically makes sense for text data; for numeric data you probably
want a range. Here are the countries with GDP between $10 and $20 billion:

select
from gdp
where gdp between 10000 and 20000

Q Write a query using <= and >= to replicate the above query that used
3.3 between.

» A query consists of three parts: the columns to be output, the data
source, and the rows to be output.

» The columns are specified in the select statement. You can pull all
the columns from the data using select *, or you can specify indi-
vidual columns like select a, b, (a+0.0)/b as ratio. >
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» The data source is in the from clause, which is typically a list of
tables.

» The row specification, generally in the where clause, is a list of con-
ditions that all rows must meet. It can be missing (and so all possible
rows are returned) or it can include a series of conditions, like where
(a = Db) and (b <= c¢).

3.2 3 DOING MORE WITH QUERIES Beyond the basic select - from -

where format, a select query can in-

clude several auxiliary clauses to refine the output further. Here is the complete
format of a select query, which this section will explore clause by clause.

select [distinct] columns
from tables

where conditions

group by columns
having group_conditions
order by columns

limit n offset n

PRUNING ROWS WITH distinct The data-metro.db file includes a listing of all

stations and the color of the subway line(s) on

which the station lies. The query select line from lines produces massive

redundancy, because there are a few dozen stations on every line, so each color
appears a few dozen times in the table.

The distinct keyword will tell the SQL engine that if several rows would be
exact duplicates, to return only one copy of that row. In this case, try

select distinct line
from lines

The distinct word prunes the rows, but is placed in the select portion of the
program. This reads more like English, but it breaks the story above that the
select statement specifies the columns and the where statement specifies the
TOWS.
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AGGREGATION Here is how to get the number of rows in the gdp table of data-wb.db:

select count(:) as row_ct
from gdp;

This produces a table with one column and one row, listing the total number of
rows in the data table.

Q How many rows does select * from pop, gdp produce? The explana-
3.4 tion for the answer will appear in the section on joins, below.

You probably want more refinement than that; if you would like to know how much
data you have in each region, then use the group by clause to say so:

select class, count(x) as countries_per_class
from classes
group by class;

After count, the two most common aggregation commands are sum() and avg().
These take an existing row as an argument. For example, the data-tattoo.db
database has a single table representing a telephone survey regarding tattoos. To
get the average number of tattoos per person broken down by race, you could use
this query:

select race, avg(tattoos.’ct tattoos ever had’)
from tattoos
group by race;

Feel free to specify multiple group by clauses. For example, you could modify
the above query to sort by race and age by changing group by race to group
by race, tattoos.’year of birth’. When you want to analyze the output,
you will be very interested in the apop_db_to_crosstab function; see page 101.

In the precip table of the data-climate.db database, the yearmonth col-
umn encodes dates in forms like 199608 to mean August, 1996. Fortunately,

@3'5 the SQL-standard round () function can be used to produce a plain year:
round(199608./100.) == 1996.0. Use round, group by, and avg to
find the average precipitation (pcp) in each year.

You can use count with the distinct keyword to find out how many of each row
you have in a table. This is useful for producing weights for each observation type,
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Function Standard mySQL SQLite via
SQL Apophenia
abs, avg, count, max, min, round,” sum o o o
acos, asin, atan, cos, exp, In, loglO0, o o

pow, rand, sin, sqrt, stddev,, tan,
variance,, std,, stddev_pop,, stddev_-
sampg, var_samps, var_pop,,

ran, vars, skewg, kurtosis,, kurt, o

“Round is not part of the SQL standard, which instead
provides floor and ceil.

Table 3.1 Standard SQL offers very few mathematical functions, so different systems offer different
extensions. The p and s subscripts indicate functions for populations or for samples (see
box on page 222.

as in this query to produce a tabulation of respondents to the tattoo survey by race
and birth year:

select distinct race, tattoos.’year of birth’ as birthyear, count(x) as weight
from tattoos
group by race, birthyear

With a group by command, you have two levels of elements, items and groups,
and you may want subsets of each. As above, you can get a subset of the items
with a where clause. Similarly, you can exclude some groups from your query
using the having keyword. For example, the above query produced a lot of low-
weighted groups. What groups have a count (¥) > 47? We can’t answer this using
where weight > 4, because there is no weight column in the data table, only in
the post-aggregation table. This is where the having keyword comes in:

select distinct race, tattoos.’year of birth’ as birthyear, count(x) as weight
from tattoos

group by race, birthyear

having weight > 4

% SQL extensions  That’s all the aggregators you get in standard SQL. So imple-
menters of the SQL standard typically add additional functions
beyond the standard; see Table 3.1 for a list, including both aggregation functions
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like var and R — R functions like 1og. The table focuses on numeric functions,
and the standard and mySQL both include several functions for manipulation of
text, dates, and other sundry types of data; see the online references for details.

Bear portability in mind when using these functions, and be careful to stick to
the SQL standard if you ever hope to use your queries in another context. If you
want to stay standard, call your data into a C-side vector or matrix and use apop_-
vector_log, apop_vector_exp, apop_vector_skew, apop_vector_var, ...,
to get the desired statistics on the matrix side.

SORTING To order the output table, add an order by clause. For example, to view
the list of country populations in alphabetical order, use

select =
from pop
order by country

* You may have multiple elements in the clause, such as order by country, pop.
If there are ties in the first variable, they are broken by the second.

* The keyword desc, short for descending, will reverse the order of the variable’s
sorting. Sample usage: order by country desc, pop.

GETTING LESS Especially when interactively interrogating a database, you may
not want to see the whole of the table you have constructed with
a select clause. The output may be a million lines long, but twenty should be
enough to give you the gist of it, so use a 1imit clause. For example, the follow-

ing query will return only the first twenty rows of the pop table:

select =
from pop
limit 20

You may want later rows, and so you can add the offset keyword. For example,

select =
from pop
limit 5 offset 3

will return the first five rows, after discarding the first three rows. Thus, you
will see rows 4-8. Beyond making interactive querying easier, limit - offset
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clauses can also be used to break tables that are somehow giving you problems
into more manageable pieces, probably via a C-side for loop.

* You get one limit/offset per query, which must be the last thing in the query.

* If you are using union and family to combine select statements (see below), your
limit clause should be at the end of all of them, and applies only to the aggregate
table.

x Random subsets The limit clause gives you a sequential subset of your data,

which may not be representative. If this is a problem, you can

take a random draw of some subset of your data. Ideally, you could provide a query
like select * from data where rand() < 0.14 todraw 14% of your data.

SQLite-via-Apophenia and mySQL provide a rand function that works exactly as
above.® For every call to the function (and thus, for every row), it draws a uniform
random number between zero and one.’

CREATING TABLES There are two ways to create a table. One is via a create state-

ment and then an insert statement for every single row of

data. The create statement requires a list of column names;® the insert state-
ment requires a list of one data element for each column.

begin;

create table newtab(name, age);
insert into newtab values("Joe", 12);
insert into newtab values("Jill", 14);
insert into newtab values("Bob", 14);
commit;

The begin-commit wrapper, by the way, means that everything will happen in
memory until the final commit. The program may run faster, but if the program

6Standard SQL’s random function is absolutely painful. SQLite’s version currently produces a number be-
tween +9,223,372,036,854,775,807, which the reader will recognize as :I:(263 —1). So we need to pull a random
number, divide by 263 _ 1, shift it to the familiar [0, 1] range, and then compare it to a limit. Standard SQL does
not even provide exponentiation, so doing this requires the bit-shifting operator which I had promised you would
never need; read 1<<x as 2%. That said, select * from data where (random()/(-(1<<63)-1.0)+1)/2
< 0.14 will pull approximately 14% of the data set.

7 After you read Section 11.1, you will wonder about the stream of random numbers produced in the database.
There is one stream for the database, which Apophenia maintains internally. To initialize it with a seed of seven,
use apop_db_rng_init (7). If you do not call this function, the database RNG auto-allocates at first use with
seed zero.

8SQLite has the pleasant property that its columns are basically type-less. Other database engines insist on
table declarations that look a little like C functions, e.g., create table newtab(name varchar([30], age
int); see your database engine documentation for details.
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crashes in the middle, then you will have lost everything. The optimal speed/secu-
rity trade-off is left as an exercise for the reader.

If you have hundreds or thousands of inserts, you are almost certainly better off
putting the data in a text file and using either the C function apop_text_to_db or
the command-line program with the same name. The form above is mostly useful
in situations where you are creating the table in mid-program, as in the example
on page 108.

The other method of creating a table is by saving the results of a query. Simply
put create table mewtab_mname as at the head of the query you would like to
save:

create table tourist_traps as
select country
from lonely_planet
where (0.0+pp) > 600

The riders table of the data-metro.db database includes the average
boardings in each station of the Washington Metro system, every year since

Q3.6 its opening. Create a riders_per_year table with one column for the year
and one column for total average boardings across the system for the given
year.

DROPPING A TABLE The converse of table creation is table dropping:

[drop table newtab;

See also apop_table_exists on the C-side (p 108), which can also delete tables
if desired.

ROWID Sometimes, you need a unique identifier for each output row. This would

be difficult to create from scratch, but SQLite always inserts such a row,

named rowid. It is a simple integer counting from one up to the number of rows,

and does not appear when you query select * from table. But if you query

select rowid, * from table, then the hidden row numbers will appear in the
output.’

9mySQL users will need to explicitly ask for such a column when creating the table. A statement like create
table newtab (id_column int auto_increment, infol char(30), ¢nfo2 double, ...) willcre-
ate the table with the typical columns that you will fill, plus an ¢d_column that the system will fill. After
insert into newtab values ("Joe", 23); insert into newtab values ("Jane" 21.8);, the ta-
ble will have one row for Joe where ¢d_column==1 and one for Jane where ¢d_column==2.
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Qs

Using order by and rowid, find the rank of your home country’s GDP
among countries in the World Bank database.

METADATA What tables are in the database? What are their column names? Stan-

dard SQL provides no easy way to answer these questions, so every

database engine has its own specific means. SQLite gives each database a table

named sqlite_master that provides such information. It includes the type of ob-

ject (either index or table, in the type column), the name (in the name column),

and the query that generated the object (in the sql column). MySQL users, see
page 106.

In practical terms, this table is primarily good for getting the lay of an unfamil-
iar database—a quick select * from sqlite_master; when you first open the
database never hurts. If you are using the SQLite command line, there is a . table
command that does exactly what this program does. Thus, the command sqlite3
mydb.db .table just lists available tables, and the .schema command gives all
of the information from sqlite_master.

MODIFYING TABLES SQL is primarily oriented toward the filtering style of pro-

gram design: e.g., have one query to filter a data table to pro-

duce a new table with bad data removed, then have another query to filter the

resulting table to produce an aggregate table, then select some elements from the
aggregate table to produce a new table, et cetera.

But you will often want to modify a table in place, rather than sending it through a
filter to produce a new table (especially if the table is several million entries long).
SQL provides three operations that will modify a table in place.

delete Unlike drop, which acts on an entire table, delete acts on individual rows

of a database. For example, to remove the columns with missing GDP data,

you could use this query [—but before you destroy data in the sample databases,
make a copy, e.g., via create table gdp2 as select * from gdp]:

delete from gdp
where gdp="."

insert The obvious complement to deleting lines is inserting them. You already

saw insert used above in the context of creating a table and then inserting

elements item-by-item. You can also insert via a query, via the form insert into
ertsting_table select * from ....
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update The update query will replace the data in a column with new data. For

example, the World Bank refrained from estimating Iraq’s 2006 population,

but the US Central Intelligence Agency’s World Factbook for 2006 estimates it at

26,783,383. Here is how to change Iraq’s population (in the pop table) from . . to
26783:

update pop
set population=26783
where country="Iraq’

» You can limit your queries to fewer rows using a Limit clause, which
gives you a sequential snippet, or via random draws.

» The SQL standard includes a few simple aggregation commands:
avg(), sum(), and count (), and most SQL implementations pro-
vide a few more nonstandard aggregators for queries called using its
functions.

» When aggregating, you can add a group by clause to indicate how
z the aggregation should be grouped.

\/

Sort your output using an order by clause.

» You can create tables using the create and insert commands, but
you are probably better off just reading the table from a text file. Use
drop to delete a table.

» SQLite gives every row a rowid, though it is hidden unless you ask
for it explicitly.

3.3 JOINS AND SUBQUERIES So far, we have been cutting one table down, ei-

ther by selecting a subset of rows or by group-

ing rows. SQL’s other great strength is in building up tables by joining together

data from disparate sources. The joining process is not based on a join keyword,

but simply specifying multiple data sources in the from section of your query and
describing how they mesh together in the where section.

If you specify two tables in your from line, then, lacking any restrictions, the

database will return one joined line for every pair of lines. Let table 1 have one
1 a

column with data |2 | and table 2 have one column with data | b | ; then select
3 c
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* from tablel, table2 will produce an output table with every combination,
3 X 3 =9 rows:

1 a

1b

1c

2 a

2b

2c

3 a

3 b

3 c.

Such a product quickly gets overwhelming: in the exercise on page 81, you saw
how joining the 208 countries in the World Bank data’s pop table with the same
208 countries in the gdp table produces a few hundred pages of rows.

Thus, the where clause becomes essential. Its most typical use for a join arises
when one column in each table represents identical information. Out of the 43,264
rows from the above join, including those that matched Qatar with Ghana and
Cameroon with Zimbabwe, we are interested only in those that match Qatar with
Qatar, Cameroon with Cameroon, and so on. That is, we want only those rows
where pop.country = gdp.country, and so the query makes sense only when
that restriction is added in:

select pop.country, pop.population, gdp.GDP
from pop, gdp
where pop.country = gdp.country

You can see that using the table-dot-column format for the column names is now
essential. In the select clause specifying the output columns, you can use either
pop.country or gdp.country, since the two will be by definition identical, or if
you are unconcerned with the country names and just want the numeric data you
can omit names entirely.

Add a calculation to the select portion of the above query to find the GDP
3.8 per capita of each country. Be sure to give the calculated column a name,
like gdp_per_cap so you can order by gdp_per_cap.
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The World Bank data includes a classification for each country. Countries
receiving World Bank assistance (what the WB calls client countries) are
classed by region (e.g., Middle East and North Africa), while other countries
Q are binned into a generic class like “Lower-middle-income economies.”

3.9 Find the total GDP per capita for each World Bank grouping. Here, you will
join using the country columns in the gdp and classes table, and by the
country columns in the pop and classes table. Add up total GDP in the
region, and divide by total population in the region.

Example: a time lag  The form above, where two columns match, is by far the
most common type of join, but there are other creative uses
of joins. For example, it is common in time series analysis to include the value of

a variable at time ¢ — 1 as data that influenced the value at time ¢.

The data-climate.db database includes a table of the deviation from the century-
long norm for aggregate worldwide temperatures (see Smith & Reynolds (2005)
for methods, caveats, and discussion). A quick select * from temp will show
that there is an upward trend in the data: the first few years are all below zero; the
last few years hover around 0.5.1°

What does the month-to-month change look like? The first step is dealing with
the fact that there are separate year and month columns. One solution would be
to deal only with year + month/12., which moves through time in smooth in-
crements of 1—12 This creates its own problem, because comparing floating-point
values is not reliable: 1900 + 1./12. - 1./12. could wind up as something
like 1900.00001, and a test whether this value exactly equals 1900 will fail. As a
variant that solves this problem, instead of dividing months by 12, multiply years
by 12, so that we are comparing only integers:

select R.year+R.month/12., R.temp — L.temp
from temp L, temp R
where R.year:12 +R.month = L.year:12 +L.month +1;

The salient feature of this data set is that not much happens. The long-term shift is
the result of a large number of very small month-to-month changes.

10Chapter 5 will cover graphing, but for now, try apop_plot_query data-climate.db "select temp
from temp" from your command line to get a visual indication of the trend.
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Perhaps we would see a larger change via a larger time span. Calculate the
year-to-year differences.

* Create an annualized table with two columns: the year and average
temp over all months for the year.

* Join that table with itself lagged by one year. You won’t have to worry
about unreliable float comparisons, but recall that if SQLite thinks
Q year is a string, then it will treat year+0.0 as a number.
3.10

Having looked at year-long differences, try decades.

* Create a decades table with the average for each decade. (Hint:
group by round(year/10).)

* Join the table with itself lagged by ten years. Are the differences be-
ginning to show a pattern?

Given that the data is sorted, we could also have done the matching of rows using
the rowid:

select L.temp — R.temp
from temp L, temp R
where R.rowid+0.0=L.rowid—1;

SPEEDING IT UP Now that you have seen how to join tables, we now cover how to

avoid joining tables. If two tables have a million elements each,

then joining them using a clause like where a=b requires 1le6 x le6 = lel2 (a

trillion) comparisons. This is impossibly slow, so there are a number of tricks to
avoid making all those 1e12 comparisons.!!

Indices  You can ask the SQL engine to create an index for a table that you intend
to use in a join later. The commands:

create index pop_index on population(country)
create index gdp_index on gdp(country)

1Say that you mean to join a million subjects via ID number, via select t1.*, t2.* from t1, t2
where tl.id = t2.id, but you forget to include the where clause. Then you just asked the system to cre-
ate a trillion-entry table, which will take from several hours to weeks. Thus, the first step in speeding up an
inordinately slow query is not to try the tricks in this section, but to make sure that you actually wrote the query
you had intended to write.
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would index the pop and gdp tables on the country column. The name of the
index, such as pop_index, is basically irrelevant and can be any gibberish that
sounds nice to you. Once you have created this index, a join using any of the
indexed columns goes much faster, because the system no longer has to do lel2
comparisons. Basically, it can look at the first value of var in the left table—say it
is 17—and then check the right table’s index for the list of elements whose value
is 17. That is, instead of one million comparisons to join the first element, it only
has to do one index lookup. The lookup and the process of building the tree took
time as well, but these processes are on the order of millions of operations, not
millions squared. The tree is internally structured as a binary tree; see Chapter 6
for discussion of b-trees.

There is standard SQL syntax for indexing multiple columns, e.g., create index
pop_index2 on pop(country, population), which goes by lexicographic or-
der. This is just an index on the first item (country) with the second column
(population) as a backup ordering; if you want to join by the second column,
you should prepare by creating another index that puts that column in the first (or
the only) position.

Subqueries  Among SQL’s nicest tricks is that it allows for the input tables to be
queries themselves. For example: how large is the average World Bank
grouping? Answering this question is a two-step process: get a count (*) for each
category, and then get an average of that. You could run a query to produce a table
of counts, save the table, and then run a query on that table to find the averages.
create table temptab as
select count(x) as ct
from classes
group by class;
select avg(ct)
from temptab

But rather than generating a temporary table, SQL allows you to simply insert the
select statement directly into the query where it is used:

select avg(ct)
from (select count(x) as ct
from classes
group by class)

The query inside the from clause will return a table, and even though that table
has no name, it can be used as a data source like any other table. If the query
output needs a name, you can alias the result as usual: from (select ...) tl
will allow you to refer to the query’s output as t1 elsewhere in the query.
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On page 79, you first found your home country’s population, then the coun-

Q tries with populations greater than this. Use a subquery to do this in one

3.11 | query. (Hint: you can replace a number with a query that returns one ele-
ment.)

Subsetting via a foreign table  If you look at the World Bank data, you will see a

large number of countries that are small islands of

a few million people. Say that we are unconcerned with these countries, and want
only the GDP of countries where population > 270.

Write a query to pull only the GDP of countries where the population is
Q?,.m greater than 270 million, using the standard where leftcol=rightcol
join syntax from the head of this section.

But the full join (as per the exercise) is not necessary: we are not particularly
concerned with the population per se, but are just using it to eliminate rows. It
would thus be logical to fit the query into the where clause, since that is the clause
that is typically used to select a subset of the rows. Indeed, we can put a query
directly into a where ... in clause:

select
from gdp
where country in (select country from pop where population > 270)

The subquery will return a list of country names, and the main query can then use
those as if you had directly typed them in.

This is typically much faster than a full join operation, because there was no need
to make (left table row count) x (right table row count) comparisons.

The boost in efficiency implies some slight restrictions: because the from clause
does not list the table used in the subquery, you can not refer to any of the sub-
query’s columns in the output.

% Joining via a for loop  The time it takes to do an especially large join is not
linear in the number of rows, primarily for real-world

reasons of hardware and software engineering. If your computer can not store all

the data points needed for a query in fast memory, it will need to do plenty of
swapping back and forth between different physical locations in the computer. But
your computer may be able to store a hundredth or a thousandth of the data set

in fast memory, and so you can perhaps get a painfully slow query to run in finite
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time by breaking it down into a series of shorter queries.

Here is an example from my own work (Baum et al., 2008). We had gathered
550,000 genetic markers (SNPs) from a number of pools of subjects, and wanted
the mean for each pool. Omitting a few details, the database included a pools
table with the subject id and the poolid of its pool, with only about a hundred
elements; and a table of individual ids, the SNP labels, and their values, which had
tens of millions of values. Even after creating the appropriate indices, the straight
join—

select pools.poolid as poolid, SNP, avg(val) as val, var(val) as var
from genes, pools

where genes.id=pools.id

group by pools.poolid, SNP

—was taking hours.

Our solution was to use a C-side for loop, plus subsetting via a foreign table,
to avoid the join that was taking so long. There are three steps to the process:
create a blank table to be filled, get a list of poolids, and then use insert into
select ... to add each poolid’s data to the main table. The details of the
functions will be discussed below, but these three steps should be evident in this
code snippet.
apop_query("create table t (poolname, SNP, val, var);");
apop_data xnames = apop_query_to_text("select distinct poolid from pools");
for (int i=0; i< names—>textsize[0]; i++)
apop_query("insert into t \n\
select *%s’, SNP, avg(val), var(val) \n\
from genes \n\
where id in (select id from pools where poolid = *%s’) \n\
group by SNP; \n\
", names[i][0], names[i][0]);

This allowed the full aggregation process to run in only a few minutes. The next
week we bought better hardware.

As noted above, if there is no natural grouping like the pools in this example, a
for loop using the 1imit ...offset form can also break a too-long table into
smaller pieces.

STACKING TABLES You can think of joining two tables as setting one table to the
right of another table. But now and then, you need to stack one
on top of the other. There are four keywords to do this.
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e Union: Sandwiching union between two complete queries, such as

select id, age, zip
from data_set_1

union

select id, age, zip
from data_set_2

will produce the results of the first query stacked directly on top of the second
query. Be careful that both tables have the same number of columns.

e Union all: If arow is duplicated in both tables, then the union operation throws
out one copy of the duplicate lines, much like select distinct includes only
one of the duplicates. Replacing union with union all will retain the duplicates.

e Intersect: As you can guess, putting intersect between two select state-
ments returns a single copy of only those lines that appear in both tables.

* Except: This does subtraction, returning only elements from the first table that do
not appear in the second. Notice the asymmetry: nothing in the second table will

appear.

You can put the output of a query into the from clause of a parent
query.

You can join tables by listing multiple tables in the from clause. When
you do, you will need to specify a where clause, and possibly the
distinct keyword, to prevent having an unreasonably long output
table.

If you intend to join elements, you can speed up the join immensely
by creating an index first.

If the join still takes too long, you can sidestep it via the select
where col in (select ...) form, or via a C-side for loop.

Tables can be stacked using union, union all, intersect, and
except.

3.4 ON DATABASE DESIGN  Say that you are not reading in existing data, but

are gathering your own, either from a simulation

or data collected from the real world. Here are some considerations and sugges-
tions for how you could design your database, summarizing the common wisdom
about the best way to think about database tables.
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The basic premise is that each type of object should have a single table, and each
object should have a single row in that table.

Figure 3.2 shows a table of observations for a generic study involving several sub-
jects and treatments, whose information was measured at several times. The simple
one-table design is how the typical spreadsheet is designed. This version has one
row per subject, so each row has two observations, and information about subjects,
treatments, observations, and pools are mixed together.

Figure 3.3 shows a structure better suited for databases. For most statistical studies,
the key object is the observation, and that gets its own table; we now see that there
were twenty observations. The other objects in the study—subjects, pools, and
treatments—all get their own tables as well. By giving each element of each table
an ID number, each table can easily cross-reference others. This setup has many
advantages.

Minimize redundancy  This is rule number one in database design, and many a
book and article has been written about how one goes about
reducing data to the redundancy-minimized normal form (Codd, 1970). If a human
had to enter all of the redundant data, this creates more chances for error, and the
same opportunities for failure come up when the data needs to be modified when
somebody notices that there were actually nine subjects in the pool from 6/2/02. In
the single-table form, information about the pool was repeated for every member of
the pool, while having a separate table for pools means that each pool’s information

is listed exactly once.

Ask non-observation questions  There are reasons to ask questions based on treat-

ments or pools, but a setup with only an obser-

vation-based table does not facilitate this. From the multiple tables, it is easy to

ask questions that focus on data, treatments, or pools, via join operations on the
observation, pool, subject, or treatment IDs.

Gelman & Hill (2007, p 239) point out that separating subjects and groups facil-
itates multilevel models, where each group has parameters for its own submodel
estimated, and then those parameters are used to estimate an overall model. This
sort of modeling will be covered in later chapters.

Use the power of row subsets  Figure 3.2 includes multiple observations on one
line, for the morning and evening measurements.

But what if we went from two observations to hourly observations for 24 hours?
Remember, there is no way to arbitrarily select a subset of columns, so columns
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subjid | value_morn | value_eve | poolcount | pooldate | t_type | t_dosage
1 23.28 NaN 12 2/2/02 control | NaN

2 14.07 NaN 12 2/2/02 control | NaN

3 20.98 NaN 12 2/2/02 control | NaN

4 12.12 NaN 12 2/2/02 control | NaN

5 30.28 28.11 11 4/2/02 case 0.2

6 22.15 14.05 11 4/2/02 case 0.2

7 19.78 12.54 8 4/2/02 case 04

8 21.53 9.01 8 4/2/02 case 04

9 27.42 23.20 19 6/2/02 case 0.2

10 18.57 12.29 19 6/2/02 case 0.2

Figure 3.2 Spreadsheet style: one monolithic table, with much redundancy.

subjid | poolid | treatmentid

obsid | subjid | value | time 1 1 1
1 1 23.28 | morn 2 1 1
2 2 14.07 | morn 3 1 1
3 3 20.98 | morn 4 1 1
4 4 12.12 | morn 5 2 2
5 5 30.28 | morn 6 2 2
6 6 22.15 | morn 7 3 3
7 7 19.78 | morn 8 3 3
8 8 21.53 | morn 9 4 2
9 9 27.42 | morn 10 4 2
10 10 18.57 | morn
11 1 NaN eve poolid | poolcount | pooldate
12 2 NaN | eve 1 12 2/2/02
13 3 NaN | eve 2 11 4/2/02
14 4 NaN eve 3 8 4/2/02
15 5 28.11 | eve 4 19 6/2/02
16 6 14.05 | eve
17 7 12.54 | eve treatmentid | t_type | t_dosage
18 8 9.01 eve 1 control | NaN
19 9 23.20 eve 2 case 0.2
20 10 12.29 | eve 3 case 0.4

4 case 0.6

Figure 3.3 Database style: one table for each object type, one row for each object.
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named 1AM, 2AV, ..., would be difficult to use. If we needed the mean of all morn-
ing observations, we’d need to do something like select (12AM + 1AM + 2AM
+ 3AM + ...)/12, but if the table in Figure 3.3 had an hour column, we could
simply use:

select avg(value)
from observations
where time like ’%am’

(or where time < 12, depending on the format we choose for the time).

If there is any chance that two observations will somehow be compared or aggre-
gated, then they should probably be recorded in different rows of the same column.
For 24 hours and ten subjects, the table would be 240 rows, which is not nearly as
pleasing or human-digestible as a 10 x 24 spreadsheet. But you will rarely need
to look at all the data at once, and can easily construct the crosstab if need be via
apop_db_to_crosstab.

Even worse than having two data points of the same type in separate columns is
having two data points of the same type in separate tables, such as a cases table
and a controls table. Or, say that a political scientist wants to do a study of county-
level data throughout the United States, including variables such as correlations
between tax rates, votes by Senators, and educational outcomes. Because DC has
no county subdivisions and its residents have no Congressional representation, the
DC data does not fit the form of the data for the states and commonwealths of the
United States. But the correct approach is nonetheless to put DC data in the same
table as the counties of the fifty states, rather than creating a table for DC and a
table for all other states—or still worse, a separate table for every state.

It is easy to select * from alldata where senate_vote is not null if
DC’s lack of representation will affect the analysis.'?

» Databases are not spreadsheets. They are typically designed for many
tables, which may have millions of rows if necessary.

» Each type of object (observations, treatments, groups) should have a
single table, and each object should have a single row in that table.

» Bear in mind the tools you have when designing your table layouts.
It is easy to join tables, find subsets of tables, and create spreadsheet-
like crosstabs from data tables.

2By  the way, select * from alldata where population > (select population from
alldata where state = ’DC’) won’t work: it will return only 49 out of 50 states, because the population of
DC (zero Senators, zero Representatives) is 572,000, while Wyoming (two Senators, one Representative) has a
population of 494,000. [2000 census data]
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This section covers the functions in
the Apophenia library that will cre-
ate and query a database. All of these functions are wrappers of functions in the
SQLite or mySQL libraries that do the dirty work, but they are sufficiently com-
plete that you should never need to use the functions in the SQLite/mySQL C
libraries directly. The details of the main discussion will apply to SQLite; mySQL
users, see page 106 for the list of differences.

IMPORTING The first command you will need is apop_open_db. If you give it the

name of a file, like apop_open_db("study. db"), then the database
will live on your hard drive. This is slower than memory, but will exist after you
stop and restart the program, and so other programs will be able to use the file, you
have more information for debugging, and you can re-run the program without
re-reading in the data. Conversely, if you give a null argument—apop_open_-
db (NULL)—then the database is kept in memory, and will run faster but disappear
when the program exits. Apophenia uses only one database at a time, but see the
apop_merge_dbs and SQLite’s attach functions below.

Command-line utilities

Apophenia includes a handful of command-line util-
ities for handling SQLite databases where there is no
need to write a full-blown C program. apop_text_-
to_db reads a text file into a database table, apop_-
merge_dbs will send tables from one database to an-
other, apop_plot_query will send query output di-
rectly to Gnuplot, and apop_db_to_crosstab will
take a table from the SQLite database and produce a
crosstab. All of these are simply wrappers for the cor-
responding Apophenia functions. For all of the utili-
ties, you can use the -h parameter to get detailed in-
structions (e.g., apop_plot_query -h).

Unless your program is generat-
ing its own data, you will probably
first be importing data from a text
file. The apop_text_to_db func-
tion will do this for you, or you can
try it on the command line (see box).
The first line of the text file can be
column names, and the remaining
rows are the data. If your data file is
not quite in the right format (and it
rarely is), see Appendix B for some
text massaging techniques.

When you are done with all of your

The queries

queries, run apop_close_db to close the database. If you send the function a
one—apop_close_db(1)—then SQLite will take a minute to clean up the da-
tabase before exiting, leaving you with a smaller file on disk; sending in a zero
doesn’t bother with this step. Of course, if your database is in memory, it’s all
moot and you can forget to close the database without consequence.

The simplest function is apop_query, which takes a single text argu-
ment: the query. This line runs the query and returns nothing, which
is appropriate for create or insert queries:
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int page_limit = 600;
apop_query(
"create table tourist_traps as \
select country \
from lonely_planet \
where (pp + 0.0) > %i ", page_limit);

* A string is easiest for you as a human to read if it is broken up over several lines;
to do this, end every line with a backslash, until you reach the end of the string.
The next example will use another alternative.

* As the example shows, all of Apophenia’s query functions accept the printf-
style arguments from page 26, so you can easily write queries based on C-side
calculations.

There are also a series of functions to query the database and put the result in a C-
side variable. This function will run the given query and return the resulting table
for your analysis:

int page_limit = 600;

apop_data xtourist_traps = apop_query_to_text(
"select country "
"from lonely_planet "
"where (0.0+pp) > %i ", page_limit);

* C merges consecutive strings, so "select country " "from" will be merged
into "select country from". We can use this to split a string over several lines.
But be careful to include whitespace: "select country" "from" merges into
"select countryfrom".

After this snippet, tourist_traps is allocated, filled with data, and ready to use—
unless the query returned no data, in which case it is NULL. It is worth checking for
NULL output after any query that could return nothing. There are apop_query_. ..
functions for all of the types you will meet in the next chapter, including apop_-
query_to_matrix to pull a query to a gsl_matrix, apop_query_to_text to
pull a query into the text part of an apop_data set, apop_query_to_data to pull
data into the matrix part, and apop_query_to_vector and apop_query_to_-
float to pull the first column or first number of the returned table into a gs1_-
vector or a double.

For immediate feedback, you can use apop_data_show to dump your data to
screen or apop_data_print to print to a file (or even back to the database). If

you want a quick on-screen picture of a table, try

[apop_data_show(apop_query_to_data("select x from table"));
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Listing 3.4 gives an idea of how quickly data can be brought from a database-side
table to a C-side matrix. The use of these structures is handled in detail in Chapter
4, so the application of the percap function may mystify those reading this book
sequentially. But the main function should make sense: it opens the database, sets
the apop_opts.db_name_column to an appropriate value, and then uses apop_-
query_to_data to pull out a data set. Its last two steps do the math and show the
results on screen.

1 | #include <apop.h>
2
3 | void percap(gsl_vector =in){
4 double gdp_per_cap = gsl_vector_get(in, 1)/gsl_vector_get(in, 0);
5 gsl_vector_set(in, 2, gdp_per_cap); //column 2 is gdp_per_cap.
61}
7
8 | int main(){
9 apop_opts.verbose ++;
10 apop_db_open("data—wb.db");
11 strepy(apop_opts.db_name_column, "country");
12 apop_data xd = apop_query_to_data("select pop.country as country, \
13 pop.population as pop, gdp.GDP as GDP, 1 as GDP_per_cap\
14 from pop, gdp \
15 where pop.country == gdp.country");
16 apop_matrix_apply (d—>matrix, percap);
17 apop_data_show(d);
18 apop_opts.output_type ='d’;
19 apop_data_print(d, "wbtodata_output");
20| }

Listing 3.4 Query populations and GDP to an apop_data structure, and then calculate the GDP per
capita using C routines. Online source: wbtodata.c.

* Line 11: As above, SQL tables have no special means of handling row names,
while apop_data sets can have both row and column labels. You can set apop_-
opts.db_name_column to a column name that will be specially treated as holding
row names for the sake of importing to an apop_data set.

* Lines 12-15: The final table will have three columns (pop, GDP, GDP/cap), so the
query asks for three columns, one of which is filled with ones. This is known as
planning ahead: it is difficult to resize gs1l_matrixes and apop_data sets, sO we
query a table of the appropriate size, and then fill the column of dummy data with
correct values in the C-side matrix.

Data to db  To go from C-side matrices to database-side tables, there are the plain
old print functions like apop_data_print and apop_matrix_print.
Lines 18-19 of Listing 3.4 will write the data table to a table named wbtodata_-
output. Say that tomorrow you decide you would prefer to have the data dumped

to a file; then just change the ’d’ to an >£’ and away you go.
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Crosstabs  In the spreadsheet world, we often get tables in a form where both the X-

and Y-dimensions are labeled, such as the case where the X-dimension

is the year, the Y-dimension is the location, and the (z,y) point is a measurement
taken that year at that location.

Conversely, the most convenient form for this data in a database is three columns:
year, location, statistic. After all, how would you write a query such as select
statistic from tab where year < 1990 if there were a separate column for
each year? Converting between the two forms is an annoyance, and so Apophenia
provides functions to do conversions back and forth, apop_db_to_crosstab and
apop_crosstab_to_db.

Imagine a data table with two columns, height and width, where height may
take on values like up, middle, or down, and width takes on values like 1left and
right. Then the query

create table anovatab as
select height, width, count(x) as ct
group by height, width

will produce a table looking something like

height width ct
up left 12
up right 18
middle left 10
middle right 7
down left
down right 18

(@)}

Then, the command

[apop_data xanova_tab = apop_db_to_crosstab("anovatab", "height", "width", "ct");

will put into anova_tab data of the form

Left Right
Up 12 18
Middle | 10 7
Down 6 18
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You can print this table as a summary, or use it to run ANOVA tests, as in Sec-
tion 9.4. The apop_crosstab_to_db function goes in the other direction; see the
online reference for details.

Use the command-line program apop_db_to_crosstab (or the corre-

Q sponding C function) and the data-climate.db database to produce a ta-

3.13 | ble of temperatures, where each row is a year and each column a month.
Import the output into your favorite spreadsheet program.

Multiple databases For both SQL and C, the dot means subelement. Just as a
C struct named person might have a subelement named
person.height, the full name of a column is dbname . tablename.colname.

The typical database system (including mySQL and SQLite) begins with one da-
tabase open, which always has the alias main, but allows you to attach additional
databases. For SQLite, the syntax is simply attach database 'newdb.db' as
dbalias; after this you can refer to tables via the dbalias. tablename form.
For mySQL, you don’t even need the attach command, and can refer to tables in
other mySQL databases using the dbname. tablename form at any time.

Aliases again help to retain brevity. Instead of using the full db. table. col format
for a column, this query assigns aliases for the db. table parts in the from clause,
then uses those alises in the select clause:

attach database newdb as n;
select tl.cl, t2.c2
from main.firsttab t1, n.othertab t2

Given two attached databases, say main and new, you could easily copy tables
between them via

create table new.tablecopy
as select = from main.origial

Apophenia also provides two convenience functions, apop_db_merge and apop_-
db_merge_table, which facilitate such copying.

In-memory databases are faster, but at the close of the program, you may want
the database on the hard drive. To get the best of both worlds, use an in-memory
database for the bulk of the work, and then write the database to disk at the end of
the program, e.g.:
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int main(void){
apop_db_open(NULL); /open a db in memory.
do_hard_math(...);
remove("on_disk.db");
apop_db_merge("on_disk.db");

* remove is the standard C library function to delete a file.

* Removing the file before merging prevented the duplication of data (because du-
plicate tables are appended to, not overwritten).

» Open an SQLite database in memory using apop_db_open (NULL),
and on the hard drive using apop_db_open("filename").

\/

Import data using apop_text_to_db.

z >» If you don’t need output, use apop_query to send queries to the da-
tabase engine.

» Use apop_query_to_(datal|matrix|vector|text|float) to
write a query result to various formats.

3.6 MADDENING DETAILS Data are never as clean as it seems in the text-

books, and our faster computers have done noth-

ing to help the fact that everybody has different rules regarding how data should

be written down. Here are a few tips on dealing with some common frustrations of
data importation and use; Appendix B offers a few more tools.

Spaces in column names  Column names should be short and have no punctu-
ation but underscores. Instead of a column name like
Percent of male treatment 1 cases showing only signs of nausea,
give a brief name like male_t1_moderate, and then create a documentation table
that describes exactly what that abbreviation means.

Not everybody follows this advice, however, which creates a small frustration.
The query select ’percent of males treatment 1’ from data will pro-
duce a table with the literal string percent of males treatment 1 repeated
for each row, which is far from what you meant. The solution is to use the dot
notation to specify a table: select data.’percent of males treatment 1’
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as males_t1l from data will correctly return the data column, and give it an
alias that is much easier to use.

Text and numbers  In some cases, you need both text and numeric data in the same
data set. As you will see in the next chapter, the apop_data
structure includes slots for both text and numbers, so you only need to specify
which column goes where. The first argument to the apop_query_to_mixed_-
data function is a specifier consisting of the letters n, v, m, t, indicating whether
each column should be read in to the output apop_data’s name, vector, a matrix
column, or a text column. For example, apop_query_to_mixed_data('"nmt",
"select a, bx%i, c¢ from data", counter) would use column a as the row
names, bxcounter as the first column of the matrix, and ¢ as a column of text
elements. This provides maximal flexibility, but requires knowing exactly what
the query will output.'?

Now that you have text in an apop_data set, what can you do with it? In most
cases, the data will be unordered discrete data, and the only thing you can do with
it is to turn it into a series of dummy variables. See page 123 for an example.

Missing data  Everybody represents missing data differently. SQLite uses NULL to
indicate missing data; Section 4.5 will show that real numbers in C
can take NAN values, whose use is facilitated by the GSL’s GSL_NAN macro. The
typical input data set indicates a missing value with a text marker like NaN, . ., -,

-1, NA, or some other arbitrary indicator.

When reading in text, you can set apop_opts.db_nan to a regular expression that
matches the missing data marker. If you are unfamiliar with regular expressions,
see Appendix B for a tutorial. For now, here are some examples:

//Apophenia’s default NaN string, matching NaN, nan, or NAN:
strcpy(apop_opts.db_nan, "NaN");

//Literal text:

strcpy (apop_opts.db_nan, "Missing");

//Matches two periods. Periods are special in regexes, so they need backslashes.
strepy (apop_opts.db_nan, "\\.\\.");

13Why doesn’t Apophenia automatically detect the type of each column? Because it stresses replicability, and
it is impossible to replicably guess column types. One common approach used by some stats packages is to look
at the first row of data and use that to cast the entire column, but if the first element in a column is NAN, then
numeric data may wind up as text or vice versa, depending on arbitrary rules. The system could search the entire
column for text and presume that some count of text elements means the entire column is text, but this too is
error-prone. Next month, when the new data set comes in, columns that used to be auto-typed as text may now
be auto-typed as numbers, so scripts written around the first data set break. Explicitly specifying types may take
work, but outguessing the system’s attempts at cleaning real-world data frequently takes more work.



gsl_stats March 24, 2009

DATABASES 105

The searched-for text must be the entire string, plus or minus surrounding quota-
tion marks or white space. None of these will match NANCY or missing persons.

Once the database has a NULL in the right place, Apophenia’s functions to read
between databases on one side and gsl_matrixes, apop_data, and other C struc-
tures on the other will translate between database NULLs and floating-point GSL_-
NANs.

Mathematically, any operation on unknown data produces an unknown result, so
you will need to do something to ensure that your data set is complete before mak-
ing estimations based on the data. The naive approach is to simply delete every ob-
servation that is not complete. Allison (2002) points out that this naive approach,
known in the jargon as listwise deletion, is a somewhat reasonable approach, espe-
cially if there is no reason to suspect that the pattern of missing data is correlated
to the dependent variable in your study.'* Missing data will be covered in detail on
page 345.

Implementing listwise deletion in SQL is simple: given datacol! and datacol2,
add a where datacol!l is not null and datacol2 is not null clause to
your query. If both are numeric data, then you can even summarize this to

where (datacoll + datacol2) is not null.

Using the above notes and the data-tattoo.db file, query to an apop_-
data set the number of tattoos, number of piercings, and the political af-
filiation of each subject. Make sure that all NaNs are converted to zeros at
some point along the chain. Print the table to screen (via apop_data_show)
Q to make sure that all is correctly in place. Then, query out a list of the po-

3.14 | litical parties in the data set. (Hint: select distinct.) Write a for loop
to run through the list, finding the mean number of tattoos and piercings for
Democrats, Republicans, .... Would you keep the last person in the survey
(who has far more tattoos than anybody else) or eliminate the person as an
outlier, via a where clause restricting the tattoo count to under 30?

Outer join  Another possibility is that a row of data is entirely missing from one
table. The World Bank database includes a lonely_planet table list-
ing the number of pages in the given country’s Lonely Planet tourist guidebook.
Antarctica has a 328-page guidebook, but no GDP and a negligible population, so

the query

14Systematic relationships between missingness and the independent variables is much less of a concern.
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select pp, gdp
from lonely_planet lp, gdp
where Ip.country=gdp.country

will not return an Antarctica line, because there is no corresponding line in the
gdp table. The solution is the outer join, which includes all data in the first
table, plus data from the second table or a blank if necessary. Here is a join that
will include Antarctica in its output. The condition for joining the two tables (join
on 1.country=gdp.country)now appears in a different location from the norm,
because the entire left outer join clause describes a single table to be used as a data
source.

select pp, gdp
from lonely_planet Ip left outer join gdp
on l.country=gdp.country
where l.country like *A%’

The query above is a left outer join, which includes all data from the left
table, but may exclude data from the right table. As of this writing, this
is all that SQLite supports, but other systems also support the right outer
Jjoin (include all entries in the right table) and the full outer join (include all
Q3_15 entries from both tables).

Using the union keyword, generate a reference table with all of the country
names from both the Lonely Planet and GDP tables. Then use a few left
outer joins beginning with the reference table to produce a complete data
set.

x mySQL  As well as SQLite, Apophenia supports mySQL. mySQL is somewhat

better for massive data sets, but will work only if you already have a

mySQL server running, have permission to access it, and have a database in place.

Your package manager will make installing the mySQL server, client, and develop-

ment libraries easy, and mySQL’s maintainers have placed online a comprehensive
manual with tutorial.

Once mySQL is set up on your system, you will need to make one of two changes:
either set your shell’s APOP_DB_ENGINE environment variable to mysql,15 or in
your code, set apop_opts.db_engine=’"m’. You can thus switch back and forth
between SQLite and mySQL; if the variable is m’ then any database operations
will go to the mySQL engine and if it is not, then database operations will be sent

15 As discussed in Appendix A, you will probably want to add export APOP_DB_ENGINE=mysql to your
.bashrc on systems using mySQL.
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to the SQLite engine. This could be useful for transferring data between the two.
For example:

apop_opts.db_engine =’'m’;

apop_db_open("mysqldb");

apop_data +d = apop_query_to_data("select * from get_me");
apop_opts.db_engine =1’;

apop_db_open("sqlitedb");

apop_opts.output_type = ’d’; //print to database.
apop_data_print(d, "put_me");

SQLite’s concept of a database is a single file on the hard drive, or a database
in memory. Conversely mySQL has a server that stores all databases in a central
repository (whose location is of no concern to end-users). It has no concept of an
in-memory database.

As noted above, every SQL system has its own rules for metatadata. From the
mysql prompt, you can query the mySQL server for a complete list of databases
with show databases, and then attach to one using use dbname; (or type mysql
dbname at the command prompt to attach to dbname from the outset). You can
use show tables; to get the list of tables in the current database (like the SQLite
prompt’s .tables command), or use show tables from your_db; to see the
tables in your_db without first attaching to it. Given a table, you can use show
columns from your_table to see the column names of your_table.'®

mySQL digresses from the SQL standard in different manners from SQLite’s
means of digressing from the standard:

SQLite is somewhat forgiving about details of punctuation, such as taking == and
= as equivalent, and “double-ticks” and ‘single-ticks’ as equivalent. mySQL de-
mands a single = and ‘single-ticks’.

After every select, create, and so on, mySQL’s results need to be internally
processed, lest you get an error about commands executed out of order. Apophe-
nia’s functions handle the processing for you, but you may still see odd effects
when sending a string holding multiple semicolon-separated queries to the apop_-
query. .. functions. Similarly, you may have trouble using begin/commit wrap-
pers to bundle queries, though mySQL’s internal cache management may make
such wrappers unnecessary.

mySQL includes many more functions beyond the SQL standard, and has a number
of additional utilities. For example, there is a LOAD command that will read in a
text file much more quickly than apop_text_to_db.

160y, use the command-line program mysqlshow to do all of these things in a slightly more pleasant format.
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» SQL represents missing data via a NULL marker, so queries may in-
clude conditions like where col is not null.

» Data files use whatever came to mind to mark missing data, so set
z apop_opts.db_nan to aregular expression appropriate for your data.

» If a name appears in one table but not another, and you would like
to joint tables by name, use the outer join to ensure that all names
appear.

3.7 SOME EXAMPLES Here are a few examples of how C code and SQL calls
can neatly interact.

TAKING SIMULATION NOTES Say that you are running a simulation and would like
to take notes on its state each period. The following
code will open a file on the hard drive, create a table, and add an entry each period.
The begin-commit wrapper puts data in chunks of 10,000 elements, so if you get
tired of waiting, you can halt the program and walk away with your data to that
point.!”
double sim_output;
apop_db_open("sim.db");
apop_table_exists("results", 1); /See below.
apop_query("create table results (period, output); begin;");
for (int i=0; i< max_periods; i++){
sim_output = run_sim(i);
apop_query("insert into results values(%i, %g);", i, sim_output);
if (1(i%1e4))
apop_query("commit; begin;");
}
apop_query("commit;");
apop_db_close(0);

* The apop_table_exists command checks for whether a table already exists. If
the second argument is one, as in the example above, then the table is deleted
so that it can be created anew subsequently; if the second argument is zero, then
the function simply returns the answer to the question “does the table exist?” but
leaves the table intact if it is there. It is especially useful in if statements.

* Every le4 entries, the system commits what has been entered so far and begins
a new batch. With some SQLite systems, this can add significant speed. mySQL

17Sometimes such behavior will leave the database in an unclean state. If so, try the SQLite command vacuum.



gsl_stats March 24, 2009

DATABASES 109

does its own batch management, so the begins and commits should be omitted for
mySQL databases.

EASY T-TESTS People on the East and West coasts of the United States sometimes
joke that they can’t tell the difference between all those states in
the middle. This is a perfect chance for a ¢ test: are incomes in North Dakota
significantly different from incomes in South Dakota? First, we will go through

the test algorithm in English, and then see how it is done in code.

Let the first data set be the income of counties in North Dakota, and let the second
be the income of counties in South Dakota. If , &2, and n are the estimated mean,
variance, and actual count of elements of the North and South data sets,
stat = —— PN THS oy 3.7.1)
\/5']2\,/71]\7 + &%/ns

[That is, the given ratio has a ¢ distribution with n 4+ ng — 2 degrees of freedom.]

The final step is to look up this statistic in the standard ¢ tables as found in the
back of any standard statistics textbook. Of course, looking up data is the job of a
computer, so we instead ask the GSL for the two-tailed confidence level (see page
305 for details):

[double confidence = (1 — 2x gsl_cdf_tdist_Q(lstatl, ny + ns —2));

If confidence is large, say > 95%, then we can reject the null hypothesis that
North and South Dakotan incomes (by county) are different. Otherwise, there isn’t
enough information to say much with confidence.

Listing 3.5 translates the process into C.

* Lines 4-8 comprise two queries, that are read into a gsl_vector. Both ask for
the same data, but one has a where clause restricting the query to pull only North
Dakotan counties, and the other has a where clause restricting the query to South
Dakota.

* Lines 10-15 get the vital statistics from the vectors: count, mean, and variance.
* Given this, line 17 is the translation of Equation 3.7.1.

* Finally, line 18 is the confidence calculation from above, which line 19 prints as a
percentage.
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1 | #include <apop.h>
2
3 | int main(){
4 apop_db_open("data—census.db");
5 gsl_vector +n = apop_query_to_vector("select in_per_capita from income "
6 "where state= (select state from geography where name =’North Dakota’)");
7 gsl_vector s = apop_query_to_vector("select in_per_capita from income "
8 "where state= (select state from geography where name ="South Dakota’)");
9
10 double n_count = n—>size,
11 n_mean = apop_vector_mean(n),
12 n_var = apop_vector_var(n),
13 s_count = s—>size,
14 S_mean = apop_vector_mean(s),
15 s_var = apop_vector_var(s);
16
17 double stat = fabs(n_mean — s_mean)/ sqrt(n_var/ (n_count—1) + s_var/(s_count—1));
18 double confidence = 1 — (2 = gsl_cdf_tdist_Q(stat, n_count + s_count —2));
19 printf("Reject the null with %g%% confidence\n", confidence:100);
20| }

Listing 3.5 Are North Dakota incomes different from South Dakota incomes? Answering the long
way. Online source: ttest.long.c.

No, easier But this is not quite as easy as it could be, because Apophenia provides

a high-level function to do the math for you, as per Listing 3.6. The

code is identical until line eight, but then line nine calls the apop_t_test function,

which takes the two vectors as input, and returns an apop_data structure as output,

listing the relevant statistics. Line ten prints the entire output structure, and line

eleven selects the single confidence statistic regarding the two-tailed hypothesis
that incomenp # incomegp.

DUMMY VARIABLES The case command is the if-then-else of SQL. Say that you
have data that are true/false or yes/no. One way to turn this
into a one-zero variable would be via the apop_data_to_dummies function on
the matrix side. This works partly because of our luck that y > nand 7" > F'in
English, so ¥ and T" will map to one and n and F' will map to zero. But say that our
survey used affirmative and negative, so the mapping would be backward from our
intuition. Then we can put a case statement in with the other column definitions

to produce a column that is one when binarygq is affirmative and zero otherwise:

select id,
case binaryq when "affirmative" then 1 else O end,
other_vars

from datatable;
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#include <apop.h>
int main(){
apop_db_open("data—census.db");
gsl_vector xn = apop_query_to_vector("select in_per_capita from income "
"where state= (select state from geography where name ="North Dakota’)");
gsl_vector s = apop_query_to_vector("select in_per_capita from income "
"where state= (select state from geography where name =’South Dakota’)");
apop_data xt = apop_t_test(n,s);
apop_data_show(t); /show the whole output set...
printf ("\n confidence: %g\n", apop_data_get_ti(t, "conf.*2 tail", —1)); //...or just one value.
}

Listing 3.6 Are North Dakota incomes different from South Dakota incomes? Online source:
ttest.c.

To take this to the extreme, we can turn a variable that is discrete but not or-
dered (such as district numbers in the following example) into a series of dummy
variables. It requires writing down a separate case statement for each value the
variable could take, but that’s what for loops are for. [Again, this is demonstration
code. Use apop_data_to_dummies to do this in practice.] Listing 3.7 creates a
series of dummy variables using this technique.

On lines 5-6, the build_a_query function queries out the list of districts.

Then the query writes a select statement with a line case State when state_-
name then 1 else O forevery state_name.

Line 11 uses the obfuscatory if (page 211) to print a comma between items, but
not at the end of the select clause.

Line 18 pulls the data from this massive query, and line 19 runs an OLS regression
on the returned data.

You can set apop_opts.verbose=1 at the head of main to have the function dis-
play the full query as it executes.

Lines 20-21 show the parameter estimates, but suppress the gigantic variance—
covariance matrix.

Note well that the for loop starting on line eight goes from i=1, not i=0. When
including dummy variables, you always have to exclude one baseline value to pre-
vent X from being singular; excluding i=0 means Alabama will be the baseline.
Q: Rewrite the for loop to use another state as a baseline. Or, set the for loop to
run the full range from zero to the end of the array, and watch disaster befall the
analysis.
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#include <apop.h>

char =build_a_query(){
char #q = NULL;
apop_data =state = apop_query_to_text("select Name as state, State as id \
from geography where sumlevel+0.0 = 40");
asprintf(&q, "select in_per_capita as income, ");
for (int i=1; i< state—>textsize[0]; i++)
asprintf(&q, "%s (case state when ’%s’ then 1 else 0 end) *%s’ %c \n",

g, state—>text[i][ 1], state—>text[i][0],
(i< state—>textsize[0]—1) ? °,’:" ’);

asprintf(&q,"%s from income\n", q);

return q;

}

int main(){
apop_db_open("data—census.db");
apop_data *d = apop_query_to_data(build_a_query());
apop_model e = apop_estimate(d, apop_ols);
e—>covariance = NULL; //don’t show it.
apop_model_show(e);

}

Listing 3.7 A sample of a for loop that creates SQL that creates dummy variables. Online source:
statedummies.c.

» There is no standard for for loops, assigning variables, or matrix-
style manipulation within SQL, so you need to do these things on the
C-side of your analysis.

» Functions exist to transfer data between databases and matrices, so
you can incorporate database-side queries directly into C code.
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My freedom thus consists in moving about within the narrow frame that I have as-
signed myself for each one of my undertakings.... Whatever diminishes constraint
diminishes strength. The more constraints one imposes, the more one frees one’s self
of the chains that shackle the spirit.

—Stravinsky (1942, p 65)

Recall that the C language provides only the most basic of basics, such as addition
and division, and everything else is provided by a library. So before you can do
data-oriented mathematics, you will need a library to handle matrices and vectors.

There are many available; this book uses the GNU Scientific Library (GSL). The
GSL is recommended because it is actively supported and will work on about as
many platforms as C itself. Beyond functions useful for statistics, it also includes a
few hundred functions useful in engineering and physics, which this book will not
mention. The full reference documentation is readily available online or in book
form (Gough, 2003). Also, this book co-evolved with the Apophenia library, which
builds upon the GSL for more statistics-oriented work.

This chapter goes over the basics of dealing with the GSL’s matrices and vectors.
Although insisting that matrices and vectors take on a specific, rigid form can be a
constraint, it is the constraint that makes productive work possible. The predictable
form of the various structures makes it is easy to write functions that allocate and
fill them, multiply and invert them, and convert between them.
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THE GSL’S MATRICES AND VECTORS  Quick—what’s 14 times 177
Thanks to calculators, we are
all a bit rusty on our multiplication, so Listing 4.1 produces a multiplication table.

#include <apop.h>

int main(){
gsl_matrix =m = gsl_matrix_alloc(20,15);

gsl_matrix_set_all(m, 1);

for (int i=0; i< m—>sizel; i++){
Apop_matrix_row(m, i, one_row);
gsl_vector_scale(one_row, i+1);

}

for (int i=0; i< m—>size2; i++){
Apop_matrix_col(m, i, one_col);
gsl_vector_scale(one_col, i+1);

}

apop_matrix_show(m);

gsl_matrix_free(m);

}

Listing 4.1 Allocate a matrix, then multiply each row and each column by a different value to
produce a multiplication table. Online source: multiplicationtable.c.

The matrix is allocated in the introductory section, on line four. It is no surprise
that it has alloc in the name, giving indication that memory is being allocated
for the matrix. In this case, the matrix has 20 rows and 15 columns. Row always
comes first, then Column, just like the order in Roman Catholic, Randy Choirboy,
or RC Cola.

Line five is the first matrix-level operation: set every element in the matrix to one.

The rest of the file works one row or column at a time. The first loop, from lines
six to nine, begins with the Apop_matrix_row macro to pull a single row, which
it puts into a vector named one_row.

Given the vector one_row, line eight multiplies every element by i+1. When this
happens again by columns on line 12, we have a multiplication table.

Line 14 displays the constructed matrix to the screen.

Line 15 frees the matrix.! The system automatically frees all matrices at the end

of the program. Some consider it good style to free matrices and other allocated
memory anyway; others consider freeing at the end of main to be a waste of time.

'Due to magic discussed below, vectors allocated by Apop_matrix_row and _col do not really exist and do
not need to be freed.
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Naming conventions  Every function in the GSL library will begin with gs1_, and
the first argument of all of these functions will be the object
to be acted upon. Most GSL functions that affect a matrix will begin with gs1_-
matrix_ and most that operate on vectors begin with gsl_vector_. The other
libraries used in this book stick to such a standard as well: 100% of Apophenia’s
functions begin with apop_ and a great majority of them begin with a data type
such as apop_data_ or apop_model_, and GLib’s functions all begin with g_-
object: g_tree_,g_list_, et cetera.’

This custom is important because C is a general-purpose language, and the design-
ers of any one library have no idea what other libraries authors may be calling in
the same program. If two libraries both have a function named data_alloc, then
one will break.

C’s library-loaded matrix and vector operations are clearly more verbose and re-
dundant than comparable operations in languages that are purpose-built for matrix
manipulation. But C’s syntax does provide a few advantages—notably that it is
verbose and redundant. As per the discussion of debugging strategy on page 46,
spacing out the operations can make debugging numerical algorithms less painful.
When there is a type name in the function name, there is one more clue in the
function call itself whether you are using the function correctly.

The authors of the Mathematica package chose not to use abbreviations; here is
their answer to the question of why, which applies here as well:

The answer. . . is consistency. There is a general convention . . . that all
function names are spelled out as full English words, unless there is a
standard mathematical abbreviation for them. The great advantage of
this scheme is that it is predictable. Once you know what a function
does, you will usually be able to guess exactly what its name is. If the
names were abbreviated, you would always have to remember which
shortening of the standard English words was used. (Wolfram, 2003,
p 35)

The naming convention also makes indices very helpful. For example, the index
of the GSL’s online reference gives a complete list of functions that operate on
vectors alphabetized under gsl_vector_. .., and the index of this book gives a
partial list of the most useful functions.

2There is one awkward detail to the naming scheme: some functions in the Apophenia library act on gs1_-
matrixes and gsl_vectors. Those have names beginning with apop_matrix and apop_vector, compromis-
ing between the library name and the name of the main input.
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Don’t delay—have a look at the gsl_vector_... and gsl_matrix_...
sections of the index to this book or the GSL’s online reference and skim
Q over the sort of operations you can do. The Apophenia package has a num-

4.1 ber of higher-level operations that are also worth getting to know, so have
a look at the apop_vector_. .., apop_matrix_. .., and apop_data_. ..
sections as well.

If you find the naming scheme to be too verbose, you can write your own wrap-
per functions that require less typing. For example, you could write a file my_-
convenience_fns.c, which could include:

void mset(gsl_matrix =m, int row, int col, double data){
gsl_matrix_set(m, row, col, data);

}

void vset(gsl_vector v, int row, double data){
gsl_vector_set(v, row, data);

}

You would also need a header file, my_convenience_fns.h:
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
void mset(gsl_matrix =m, int row, int col, double data);
void vset(gsl_vector v, int row, double data);

#define VECTOR_ALLOC(vname, length) gsl_vector =vname = gsl_vector_alloc(length);
// For simple functions, you can rename them via #define; see page 212:

#define vget(v, row) gsl_vector_get(v, row)
#define mget(m, row, col) gsl_matrix_get(m, row, col)

After throwing an #include "my_convenience_fns.h" at the top of your pro-
gram, you will be able to use your abbreviated syntax such as vget (v,3). It’s up
to your @sthetic as to whether your code will be more or less legible after you
make these changes. But the option is always there: if you find a function’s name
or form annoying, just write a more pleasant wrapper function for your personal
library that hides the annoying parts.

BASIC MATRIX AND VECTOR OPERATIONS The simplest operations on matrices

and vectors are element-by-element

operations such as adding the elements of one matrix to those of another. The

GSL provides the functions you would expect to do such things. Each modifies its
first argument.
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gsl_matrix_add (a,b); Il aij — aij + b,V 1i,J
gsl_matrix_sub (a,b); Il aij < ai; — bij,Vi,j

gsl_matrix_mul_elements (a,b); // a;; < a;j - bij,Vi,j
gsl_matrix_div_elements (a,b); // a;j «— ai;/bij, V1,7
gsl_matrix_scale (a,x); Il aij — a5 -x,Vi,j €N,z eR
gsl_matrix_add_constant (a,x); // ai; <— ai; +z,Vi,j €N,z €R

gsl_vector_add (a,b); /la; — a; + b;,Vi
gsl_vector_sub (a,b); Ila; — a; —bi;,V1
gsl_vector_mul (a,b); /la; — a; -b;,Vi
gsl_vector_div (a,b); /a; — a;/b;,Vi
gsl_vector_scale (a,x); Na; —a;-x,VieN,xzeR
gsl_vector_add_constant (a,x); //a; «—a;i +z,Vie N,z € R
apop_vector_log(a); Il a; — In(a;),V 4
apop_vector_log10(a); Il a; —logyy(ai), Vi
apop_vector_exp(a); Il a; «— e Yi

The functions to multiply and divide matrix elements are given slightly lengthier
names to minimize the potential that they will be confused with the process of mul-
tiplying a matrix with another matrix, AB, or its inverse, AB~!. Those operations
require functions with more computational firepower, introduced below.

Rewrite the structured birthday paradox program from page 35 using a
gsl_matrix instead of the struct that it currently uses.

* alloc or calloc the matrix in main; pass it to both functions.
* Replace the #include directives to call in apop.h.

Q * Replace everything after the title-printing line in print_days with
42 apop_matrix_show(data_matriz).

* Put three gsl_matrix_set commands in the for loop of
calculate_days to set the number of people, likelihood of match-
ing the first, and likelihood of any match (as opposed to one minus
that likelihood, as in bdayfns. c).

Apply and map  Beyond the simple operations above, you will no doubt want to
transform your data in more creative ways. For example, the func-

tion in Listing 4.2 will take in a double indicating taxable income and will return

US income taxes owed, assuming a head of household with two dependents tak-

ing the standard deduction (as of 2006; see Internal Revenue Service (2007)). This
function can be applied to a vector of incomes to produce a vector of taxes owed.



gsl_stats March 24, 2009

118 CHAPTER 4

[c BN o) SRV i T

VO NG TN NG T NG T NG T NG I NG T N6 T NG R S S T T e e
0NN NP W= OV WN PR WN—ON\O

#include <apop.h>

double calc_taxes(double income){
double cutoffs[] = {0, 11200, 42650, 110100, 178350, 349700, INFINITY };
double rates[] = {0, 0.10, .15, .25, .28, .33, .35};
double tax = 0;
int bracket = 1;
income —= 7850; /Head of household standard deduction
income —= 3400x3; /fexemption: self plus two dependents.
while (income > 0){
tax += rates[bracket] x GSL_MIN(income, cutoffs[bracket]—cutoffs[bracket—1]);
income —= cutoffs[bracket];
bracket ++;
}

return tax;

}

int main(){
apop_db_open("data—census.db");
strncpy (apop_opts.db_name_column, "geo_name", 100);
apop_data «d = apop_query_to_data("select geo_name, Household_median_in as income\
from income where sumlevel = *040°\
order by household_median_in desc");
Apop_col_t(d, "income", income_vector);
d—>vector = apop_vector_map(income_vector, calc_taxes);
apop_name_add(d—>names, "tax owed", ’v’);
apop_data_show(d);
}

Listing 4.2 Read in the median income for each US state and find the taxes a family at the median
would owe. Online source: taxes.c.

Lines 24-27 of Listing 4.2 demonstrate the use of the apop_data structure, and
will be explained in detail below. For now, it suffices to know that line 24 produces
a gsl_vector named income_vector, holding the median household income for
each state.

The bulk of the program is the specification of the tax rates in the calc_taxes
function. In the exercise on page 192, you will plot this function.

The program does not bother to find out the length of the arrays declared in lines
four and five. The cutoffs array has a final value that guarantees that the while
loop on lines 10-14 will exit at some point. Similarly, you can always add a final
value like NULL or NAN? to the end of a list and rewrite your for loop’s header to
for (int i=0; datal[i] != NAN; i++). This means you have to remember to
put the sentinel value at the end of the list, but do not need to remember to fix a
counter every time you fix the array.

3NAN is read as not-a-number, and will be introduced introduced on page 135.
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You could write a for loop to apply
the calc_tax function to each ele-
ment of the income vector in turn.
But the apop_vector_map function
will do this for you. Let ¢() be
the calc_taxes function, and i be
the income_vector; then the call
to apop_vector_map on line 25 re-
turns c(i), which is then assigned to
the vector element of the data set,
d->vector. Line 27 displays the
output.
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Threading

Even low-end laptops ship with processors that are
capable of simultaneously operating on two or more
stacks of frames, so the map and apply functions
can split their work among multiple processors. Set
apop_opts.thread_count to the desired number of
threads (probably the number of processor cores in
your system), and these functions apportion work to
processors appropriately.

When threading, be careful writing to global vari-
ables: if a thousand threads could be modifying a
global variable in any order, the outcome is likely un-
defined. When writing functions for threading, your
best bet is to take all variables that were not passed

But apop_vector_map is just the | jj explicitly as read-only.

beginning: Apophenia provides a
small family of functions to map and apply a function to a data set. The full index
of functions is relegated to the manual pages, but here is a list of examples to give
you an idea.

You saw that apop_vector_map(income_vector, calc_taxes) will take in
a gsl_vector and returns another vector. Or, apop_vector_apply(income_-
vector, calc_taxes) would replace every element of income_vector with
calc_taxes(element).

One often sees functions with a header like double log_likelihood(gsl_-
vector indata), which takesin a data vector and returns a log likelihood. Then if
every row of dataset is a vector representing a separate observation, then apop_-
matrix_map(dataset, log_likelihood) would return the vector of log likeli-
hoods of each observation.

Functions with . .._map_. .._sum, like apop_matrix_map_all_sum, will return
the sum of f(item) for every item in the matrix or vector. For example, apop_-
matrix_map_all_sum(m, gsl_isnan) will return the total number of elements
of m that are NAN. Continuing the log likelihood example from above, apop_-
matrix_map_sum(dataset, log_likelihood) would be the total log likeli-
hood of all rows.

Another example from the family appeared earlier: Listing 3.4 (page 100) used
apop_matrix_apply to generate a vector of GDP per capita from a matrix with
GDP and population.

» You can express matrices and vectors via gsl_matrix and gsl_-
vector structures.

» Refer to elements using gsl_matrix_set and gsl_matrix_get
(and similarly for apop_data sets and gsl_vectors). >
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Figure 4.3 The vector is column —1 of the matrix, while the text gets its own numbering system.
Row names are shared by all three elements.

>

» Once your data set is in these forms, you can operate on the matrix
z or vector as a whole using functions like gsl_matrix_add(a,b) or
gsl_vector_scale(a,x).

» Use the apop_(matrix|vector)_(map|apply) family of functions to
send every row of a vector/matrix to a function in turn.

4.2 apop_data The apop_data structure is the joining-together of four data
types: the gsl_vector, gsl_matrix, a table of strings, and an
apop_name structure.

The conceptual layout is given in Figure 4.3. The vector, columns of the matrix,
and columns of text are all named. Also, all rows are named, but there is only one
set of row names, because the presumption is that each row of the structure holds
information about a single observation.

e Think of the vector as the —1st element of the matrix, and the text elements as
having their own addresses.

* There are various means of creating an apop_data set, including apop_query_-
to_data, apop_matrix_to_data, apop_vector_to_data, or creating a blank
slate with apop_data_alloc; see below.

* For example, Listing 4.2 used apop_query_to_data to read the table into an
apop_data set, and by setting the apop_opts.db_name_column option to a col-
umn name on line 20, the query set row names for the data. Line 25 sets the vector
element of the data set, and line 26 adds an element to the vector slot of the names
element of the set.

* You can easily operate on the subelements of the structure. If your matriz_man-

ipulate function requires a gsl_matrix, but your_datais an apop_data struc-
ture, then you can call matriz_manipulate(your_data->matrix). Similarly,
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you can manipulate the names and the table of text data directly. The size of the
text data is stored in the textsize element. Sample usage:

apop_data xset = apop_query_to_text(...);
for (int r=0; r< set—>textsize[0]; r++){
for (int c=0; c< set—>textsize[1]; c++)
printf("%s\t", set—>text[r][c]);
printf("\n");
}

* There is no consistency-checking to make sure the number of row names, the
vector->size, ormatrix->sizel are equal. If you want to put a vector of fifteen
elements and a 10 x 10 matrix in the same structure, and name only the first two
columns, you are free to do so. In fact, the typical case is that not all elements are
assigned values at all. If vector_szze is zero, then

[apop_data s=newdata_m = apop_data_alloc(vector_size, n_rows, n_cols);

will initialize most elements of newdata to NULL, but produce a n_rows Xn_cols
matrix with an empty set of names. Alternatively, if n_rows == 0 but vector_-
size is positive, then the vector element is initialized and the matrix set to NULL.*

Get, set, and point ~ You can use any of the GSL tools above to dissect the gs1_-

matrix element of the apop_data struct, and similarly for the

vector element. In addition, there is a suite of functions for setting and getting
an element from an apop_data set using the names. Let ¢ be a title and ¢ be a
numeric index; then you may refer to the row—column coordinate using the (i, 1),
(t,4), (i,t), or (t,t) form:

apop_data_get(your_data, i, j);

apop_data_get_ti(your_data, "rowname", j);

apop_data_get_it(your_data, i, "colname");

apop_data_get_tt(your_data, "rowname", "colname");

apop_data_set(your_data, i, j, new_value);

apop_data_set_ti(your_data, "rowname", j, new_value);

apop_data_ptr(your_data, i, j);
apop_data_ptr_ti(your_data, "rowname", j);

4Seasoned C programmers will recognize such usage as similar to a union between a gs1_vector, a gsl_-
matrix, and a char array, though the apop_data set can hold both simultaneously. CT+ programmers will
observe that the structure allows a form of polymorphism, because you can write one function that takes an
apop_data as input, but operates on one or both of a gs1_vector or a gsl_matrix, depending on which is not
NULL in the input.
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* The apop_data_ptr... form returns a pointer to the given data point, which
you may read from, write to, increment, et cetera. It mimics the gsl_matrix_ptr
and gsl_vector_ptr functions, which do the same thing for their respective data
structures.

* As above, you can think about the vector as the —1st element of the matrix, so for
example, apop_data_set_ti(your_data, "rowname", -1) will operates on
the apop_data structure’s vector rather than the matrix. This facilitates forms like
for (int i=-1; i< data->matrix->size2; i++), that runs across an entire
row, including both vector and matrix.

» These functions use case-insensitive regular-expression matching to find the right
name, so you can even be imprecise in your column request. Appendix B dis-
cusses regular expressions in greater detail; for now it suffices to know that you
can be approximate about the name: "p.val.*" will match P value, p-val and
p.values.

For an example, flip back to ttest . c, listed on page 111. Line ten showed the full
output of the ¢ test, which was a list of named elements, meaning that the output
used the set’s rownames and vector elements. Line eleven pulled a single named
element from the vector.

x Forming partitioned matrices  You can copy the entire data set, stack two data

matrices one on top of the other (stack rows),

stack two data matrices one to the right of the other (stack columns), or stack
two data vectors:

apop_data s«newcopy = apop_data_copy(oldset);

apop_data xnewcopy_tall = apop_data_stack(oldset_one, oldset_two, 'r’);
apop_data s«newcopy_wide = apop_data_stack(oldset_one, oldset_two, ’c’);
apop_data s=newcopy_vector = apop_data_stack(oldset_one, oldset_two, 'v’);

Again, you are generally better off doing data manipulation in the database. If the
tables are in the database instead of apop_data sets the vertical and horizontal
stacking commands above are equivalent to

select * from oldset_one
union
select = from oldset_two

/% and %/

select t1.x, t2.%
from oldset_one t1, oldset_two t2
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The output of the exercise on page 105 is a table with tattoos, piercings, and
political affiliation. Run a Probit regression to determine whether political
affiliation affects the count of piercings.

* The function apop_data_to_dummies will produce a new data ma-
trix with a column for all but the first category.

 Stack that matrix to the right of the original table.

@4'3 * Send the augmented table to the apop_probit.estimate function.
The output for the categorical variables indicates the effect relative to
the omitted category.

* Encapsulate the routine in a function: using the code you just wrote,
put together a function that takes in data and a text column name or
number and returns an augmented data set with dummy variables.

» The apop_data structure combines a vector, matrix, text array, and
z names for all of these elements.

» You can pull named items from a data set (such as an estimation out-
put) using apop_data_get_ti and family.

4.3 SHUNTING DATA Igor Stravinsky, who advocated constraints at the head

of this chapter, also points out that “Rigidity that slightly

yields, like Justice swayed by mercy, is all the beauty of earth.””> None of function

to this point would make any sense if they did not operate on a specific structure

like the gs1_matrix or gsl_vector, but coding is much easier when there is the

flexibility of easily switching among the various constrained forms. To that end,

this section presents suggestions for converting among the various data formats

used in this book. It is not an exciting read (to say the least); you may prefer to
take this section as a reference for use as necessary.

Table 4.4 provides the key to the method most appropriate for each given con-
version. From/to pairs marked with a dot are left as an exercise for the reader;
none are particularly difficult, but may require going through another format; for
example, you can go from a double[ ] to an apop_data set via double[ ] =
gsl_matrix = apop_data. As will be proven below, it is only two steps from
any format to any other.

5Stravinsky (1942), p 54, citing GK Chesterton, “The furrows,” in Alarms and discursions.
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SEIR SR ;

&@‘“&o“@ & & 63”9@&
Text file C F F
Db table Q Q Q Q

€ doublel ] C F F

£ gslvector P P F C F F
gslmatrix P P F V C F
apop_data P P F S S C

Table 4.4 A key to methods of conversion.

x Copying structures  The computer can very quickly copy blocks without bother-

ing to comprehend what that data contains; the function to

do this is memmove, which is a safe variant of memcpy. For example, borrowing the
complex structure from Chapter 2:

complex first = {.real = 3, .imaginary = —1};
complex second;
memmove(&second, &first, sizeof(complex));

The computer will go to the location of £irst and blindly copy what it finds to the
location of second, up to the size of one complex struct. Since first and second
now have identical data, their constituent parts are guaranteed to also be identical.®

But there is one small caveat: if one element of the struct is a pointer, then it is
the pointer that is copied, not the data itself (which is elsewhere in memory). For
example, the gs1_vector includes a data pointer, so using memmove would result
in two identical structs that both point to the same data. If you want this, use a view,
as per Method V below; if you want a copy, then you need to memmove both the
base gs1_vector and the data array. This sets the stage for the series of functions
below with memcpy in the name that are modeled on C’s basic memmove/memcpy
functions but handle internal pointers correctly.

Method C: Copying The gsl_..._memcpy functions assume that the destination
to which you are copying has already been allocated; this al-
lows you to reuse the same space and otherwise carefully oversee memory. The

SHow to remember the order of arguments: computer scientists think in terms of data flowing from left to
right: in C,dest = source;inR, dest <- source; in pseudocode, dest «— source. Similarly, most copying
functions have the data flow from end of line to beginning: memmove (dest, source).
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apop_. . . _copy functions allocate and copy in one step, so you can declare and
copy on the same line, and more easily embed a copy into a filtering operation.

//Text file = Text file
//Just use the system’s file copy command. The apop_system function acts like
//the standard C system command, but accepts printf-style arguments:
apop_system("cp %s %s", from_file_name, to_file_name);
//gsl_vector = gsl_vector
gsl_vector xcopy = gsl_vector_alloc(original —>size);
gsl_vector_memcpy(copy, original);
gsl_vector xcopy2 = apop_vector_copy (original);
//double[ ] = double[ ]
//Let original_size be the length of the original array.”
double =copy1 = malloc(sizeof(double) : original_size);
memmove(copy1, original, sizeof(double) * original_size);
double copy2[original_size];
memmove(&copy?2, original, sizeof(original));
//gsl_matrix = gsl_matrix
gsl_matrix xcopy = gsl_matrix_alloc(original —>size1, original —>size2);
gsl_matrix_memcpy(copy, original);
gsl_matrix :xcopy2 = apop_matrix_copy(original);
//apop_data = apop_data
apop_data =copyl = apop_data_alloc(original —>vector—>size, original —>matrix—>sizel,
original —>matrix —>size2);
apop_data_memcpy(copy1, original);
apop_data =copy2 = apop_data_copy (original);

Method F: Function call  These are functions designed to convert one format to
another.

There are two ways to express a matrix of doubles. The analog to using a pointer is
to declare a list of pointers-to-pointers, and the analog to an automatically allocated
array is to use double-subscripts:

double :x+method_one = malloc(sizeof(double:):size_1);
for (int i=0; i< size_1; i++)

method_one[i] = malloc(sizeof(double) * size_2);
double method_two[size_1][size_2] = {{2,3,4},{5,6,7} };

The first method is rather inconvenient. The second method seems convenient,
because it lets you allocate the matrix at once. But due to minutiz that will not be

"The sizeof function is not just for types: you can also send an array or other element to
sizeof. If original is an array of 100 doubles, then sizeof (original)=100*sizeof (double), while
sizeof (*original)=sizeof (double), and so you could use sizeof (original) as the third argument for
memmove. However, this is incredibly error prone, because this is one of the few places in C where you could send
either an object or a pointer to an object to the same function without a warning or error. In cases with modest
complexity, the difference between an array and its first element can be easy to confuse and hard to debug.



gsl_stats March 24, 2009

126 CHAPTER 4

discussed here (see Kernighan & Ritchie (1988, p 113)), that method is too much
of a hassle to be worth anything.

Instead, declare your data as a single line, listing the entire first row, then the sec-
ond, et cetera, with no intervening brackets. Then, use the apop_line. .. func-
tions to convert to a matrix. For another example, see page 9.

//text = db table
//The first number states whether the file has row names; the second
//whether it has column names. Finally, if no colnames are present,
//you can provide them in the last argument as a char **
apop_text_to_db("original.txt", "tablename", 0, 1, NULL);
//text = apop_data
apop_data xcopyd = apop_text_to_data("original.txt", 0, 1);
//double[ ][ ] = gsl_vector,gsl_matrix
double original[] = {{2,3.,4}, {5,6,7}};
gsl_vector xcopv = apop_array_to_vector(original, original_size);
gsl_matrix xcopm = apop_array_to_matrix(original, original_sizel, original_size2);

//double[ ] = gsl_matrix

double original[] = {2,3,4,5,6,7};

int orig_vsize = 0, orig_sizel =2, orig_size2 = 3;

gsl_matrix :copym = apop_line_to_matrix(original, orig_sizel, orig_size2);
//double[ ] = apop_data

apop_data xcopyd = apop_line_to_data(original, orig_vsize, orig_sizel, orig_size2);

//gsl_vector = doublel[ ]

double :copyd = apop_vector_to_array(original_vec);
//gsl_vector = n X 1 gsl_matrix

gsl_matrix xcopym = apop_vector_to_matrix(original_vec);
//gsl_vector, gsl_matrix = apop_data

apop_data xcopydv = apop_vector_to_data(original_vec);

apop_data xcopydm = apop_matrix_to_data(original_matrix);

Method P: Printing ~ Apophenia’s printing functions are actually four-in-one func-

tions: you can dump your data to either the screen, a file, a

database, or a system pipe [see Appendix B for an overview of pipes]. Early in

putting together an analysis, you will want to print all of your results to screen,

and then later, you will want to save temporary results to the database, and then

next month, a colleague will ask for a text file of the output; you can make all of
these major changes in output by changing one character in your code.

The four choices for the apop_opts.output_type variable are

apop_opts.output_type =’s’; //default: print to screen.

apop_opts.output_type ='f*; //print to file.

apop_opts.output_type =’d’; //store in a database table.
apop_opts.output_type ='p’; /write to the pipe in apop_opts.output_pipe.
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* The screen output will generally be human-readable, meaning different column
sizes and other notes and conveniences for you at the terminal to understand what
is going on. The file output will generally be oriented toward allowing a machine
to read the output, meaning stricter formatting.

* The second argument to the output functions is a string. Output to screen or pipe
ignores this; if outputting to file, this is the file name; if writing to the database,
then this will be the table name.?

//gsl_vector, gsl_matrix, apop_data = text file
apop_opts.output_type =t’
apop_vector_print(original_vector, "text_file_copy");
apop_matrix_print(original_matrix, "text_file_copy");
apop_data_print(original_data, "text_file_copy");

//gsl_vector, gsl_matrix, apop_data = db table
apop_opts.output_type =’d’
apop_vector_print(original_vector, "db_copy");
apop_matrix_print(original_matrix, "db_copy");
apop_data_print(original_data, "db_copy");

Method Q: Querying  The only way to get data out of a database is to query it out.
//db table = db table
apop_query("create table copy as \
select * from original");
//db table = double, gsl_vector, gsl_matrix, or apop_data
double d = apop_query_to_float("select value from original");
gsl_vector v = apop_query_to_vector("select * from original");
gsl_matrix «m = apop_query_to_matrix("select * from original");
apop_data =d = apop_query_to_data("select * from original");

Method S: Subelements  Sometimes, even a function is just overkill; you can just
pull a subelement from the main data item.

Notice, by the way, that the data subelement of a gs1_vector can not necessarily
be copied directly to a double[ ]—the stride may be wrong; see Section 4.6 for
details. Instead, use the copying functions from Method F above.

//apop_data = gsl_matrix, gsl_vector
my_data_set —> matrix
my_data_set —> vector

8File names tend to have periods in them, but periods in table names produce difficulties. When printing to a
database, the file name thus has its dots stripped: out . put.csv becomes the table name out_put.
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Method V: Views  Pointers make it reasonably easy and natural to look at subsets
of a matrix. Do you want a matrix that represents X with the first
row lopped off? Then just set up a matrix whose data pointer points to the second
row. Since the new matrix is pointing to the same data as the original, any changes
will affect both matrices, which is often what you want; if not, then you can copy

the submatrix’s data to a new location.

However, it is not quite as easy as just finding the second row and pointing to it,
since a gsl_matrix includes information about your data (i.e., mefadata), such as
the number of rows and columns. Thus, there are a few macros to help you pull
a row, column, or submatrix from a larger matrix. For example, say that m is a
gsl_matrixx*, then

Apop_matrix_row(m, 3, row_v);
Apop_matrix_col(m, 5, col_v);
Apop_submatrix(m, 2, 4, 6, 8, submatrix);

will produce a gsl_vector* named row_v holding the third row, another named
col_v holding the fifth column, and a 6x8 gsl_matrix* named submatrix
whose (0, 0)th element is at (2, 4) in the original.

For an apop_data set, we have the names at our disposal, and so you could
use either Apop_row(m, 3, row_v) and Apop_col(m, 5, col_v) to pull the
given vectors from the matrix element of an apop_data structure using row/col-
umn number, or Apop_row_t(m, "fourth row", row_v) and Apop_col_t(m,
"sizth column", col_v) to pull these rows and columns by their titles.

The macros work a bit of magic: they internally declare an automatically-allocated
gsl_matrix or vector with the requisite metadata, and then declare a pointer
with the name you selected, that can be used like any other pointer to a matrix or
vector. However, because these macros used only automatically allocated memory,
you do not need to free the matrix or vector generated by the macro. Thus, they
provide a quick, disposable view of a portion of the matrix.’ If you need a more
permanent record, them copy the view to a regular vector or matrix using any of
the methods from prior pages (e.g., gsl_vector *permanent_copy = apop_-
vector_copy (temp_view) ;).

9These macros are based on GSL functions that are slightly less convenient. For example:
gsl_vector v = gsl_matrix_col(a_matrix, 4).vector;
apop_vector_show(&v) ;
If the macro seems to be misbehaving, as macros sometimes do, you can fall back on this form.
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4.4 LINEAR ALGEBRA Say that we have a transition matrix, showing whether

the system can go from a row state to a column state.
For example, Figure 4.4 was such a transition matrix, showing which formats can
be converted to which other formats.

Omitting the labels and marking each transition with a one and each dot in Figure
4.4 with a zero, we get the following transition matrix:

110001
010111
001110
111111
111111
111111

Listing 4.5 shows a brief program to read the data set from a text file, take the dot
product of t with itself, and display the result.

#include <apop.h>

int main(){
apop_data xt = apop_text_to_data("data—markov", 0, 0);
apop_data out = apop_dot(t, t, 0, 0);
apop_data_show(out);

Listing 4.5 Two transitions along a transition matrix. Online source: markov.c.

Before discussing the syntax of apop_dot in detail, here is the program’s output:

231223
343444
223332
454555
454555
454555

This tells us, for example, that there are three ways to transition from the first state
to the second in two steps (you can verify that they are: 1 = 1 = 2,1 = 2 = 2,
and 1 = 6 = 2).

The apop_dot function takes up to four arguments: two apop_data structures, and
one flag for each matrix indicating what to do with it (>t ’=transpose the matrix,
v’ =use the vector element, O=use the matrix as-is). For example, if X is a matrix,
then
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[apop_dot(X, X,’t, 0);

will find X’X: the function takes the dot product of X with itself, and the first
version is transposed and the second is not.

* If a data set has a matrix component, then it will be used for the dot product,
and if the matrix element is NULL then the vector component is used.

* There should be exactly as many transposition flags as matrices. If the first
element is a vector, it is always taken to be a row; if the second element
is a vector, it is always a column. In both cases, if the other element is a
matrix, you will need one flag to indicate whether to use the apop_data set’s
vector element (’v?), use the transposed matrix (’t?), or use the matrix as
written (any other character).!”

 If both elements are vectors, then you are probably better off just using
gsl_blas_ddot, below, but if you use apop_dot, the output will be an
apop_data set that has a vector element of length one.

The quadratic form XY X appears very frequently in statistical work.
Write a function with the header apop_data *quadratic_form(apop_-

Q4_4 data *x, apop_data *y) ; that takes two gsl_matrixes and returns the
quadratic form as above. Be sure to check that y is square and has the same
dimension as x->sizel.

Vector - vector  Given two vectors x and y, gsl_blas_ddot returns x1y; + x2y2 +
-+ ++x,y,. Rather than outputting the value of x-y as the function’s
return value, it takes the location of a double, and places the output there. E.g., if

x and y are gsl_vectorxs, use

double dotproduct;
gsl_blas_ddot (x, y, &dotproduct);

10Why do you have to tell a computer whether to transpose or not? Some feel that if you send a 1 to indicate
transposition when you meant 0 (or vice versa), the system should be able to determine this. Say that you have a
1 x 10 vector that you will multiply against three data sets, where the first is 8 x 10, the second is 15 x 10, and
the third is 10 x 10. You write a simple for loop:
for(int i=0; i<3; i++)

out[i] = apop_dot(datal[il, v, 1);

At i=0, a ‘smart’ system realizes that you committed a faux pas: an 8 X 10 matrix dot a 10 X 1 column vector
works without transposition. So it corrects you without telling you, and does the same with data[1]. With
data[2], the transposition works, since there are both ten rows and ten columns. So out [0] and out[1] are
correct and out [2] is not. Good luck catching and debugging that.
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Write a table displaying the sum of squares 12 4 22 + 32 + ... + n? for
n = 1 through 10.

¢ Write a function that takes in n and

allocates a gsl_vector* of size n,

fills the vector with 1, ..., n,

calculates and returns v - v using gs1_blas_ddot,

=

and finally frees v.

* Write a loop for n = 1 through 10 that calls the above function and
then prints n and the returned value.

* Verify your work, by printing n(n + 1)(2n + 1)/6 alongside your
calculation of the sum of squares up to n.

An example: Cook’s distance  Cook’s distance is an estimate of how much each
data point affects a regression (Cook, 1977). The
formula is

> (@5 — g5)?
p-MSE

where p is the number of parameters, M SE is mean squared error for the overall

regression, ¢/; is the jth element of the predicted value of y based on the overall

regression, and ;&;i is the jth element of the predicted value of y based on a regres-
sion excluding data point 7. That is, to find Cook’s distance for 3,000 data points,
we would need to do a separate regression on 3,000 data sets, each excluding a
different data point. The formula simply quantifies whether the predictions made
by the main regression change significantly when excluding a given data point.

Ci = (4.4.1)

The procedure provides us a good opportunity to do some matrix-shunting and
linear algebra, sipce we will need functions to produce the subsets, functions to
calculate y = X3, and to find the squared differences and MSE.

The first function is in Listing 4.6. It produces the series of data sets, each with

one row missing. The function is named after the jackknife procedure, which uses
the same delete-one loop for calculating covariances or correcting bias.!!

e Lines 9-10 use a submatrix to produce a view of the main matrix starting at the

"'The Jackknife is not discussed in this book; see the online documentation for Apophenia’s apop_-
jackknife_cov.
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#include <apop.h>
typedef double (xmath_fn)(apop_data =);

gsl_vector =xjack_iteration(gsl_matrix +m, math_fn do_math){
int height = m—>sizel;
gsl_vector =out = gsl_vector_alloc(height);
apop_data xreduced = apop_data_alloc(0, height — 1, m—>size2);
APOP_SUBMATRIX(m, 1, 0, height — 1, m—>size2, mv);
gsl_matrix_memcpy(reduced —>matrix, mv);
for (int i=0; i< height; i++){
gsl_vector_set(out, i, do_math(reduced));
if (i < height — 1){

APOP_MATRIX_ROW(m, i, onerow);
gsl_matrix_set_row(reduced —>matrix, i, onerow);
}
}
return out;

}

Listing 4.6 Iteratively produce in->sizel submatrices, each with one omitted row of data. Online
source: jackiteration.c.

position (1,0), and with size (m->sizel - 1, m->size2)—that is, the original
matrix with the first row missing—and then uses gsl_matrix_memcpy to copy
that to a new matrix.

The for loop then repeats the view-and-copy procedure row by row. It begins with
row zero, which was omitted before, and overwrites row zero in the copy, aka row
one of the original. It then copies over original row one, overwriting the copy of
original row two, and so on to the end of the matrix.

Line 12 calls the function which was sent in as an argument. See page 190 for
notes on writing functions that take functions as inputs, including the meaning of
the typedef on line 3.

Now that we have the matrix-shunting out of the way, Listing 4.7 provides addi-
tional functions to do the linear alegbra.

The sum_squared_diff function calculates > ,(L; — R;)?. The first line finds
L — R, and the second line applies the function gsl_pow_2 to each element of
L — R (that is, it squares each element) and returns the post-squaring sum.'?

The project function is taking the dot product y.st = X3. By giving this single

12The GSL provides efficient power calculators from gs1_pow_2 up to gs1_pow_9, and the catch-all function
gsl_pow_int(value, exponent), that will raise value to any integer exponent in a more efficient manner
than the general-purpose pow.
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#include <apop.h>

typedef double (xmath_fn)(apop_data x);
gsl_vector #jack_iteration(gsl_matrix *, math_fn);
apop_data xols_data;

gsl_vector  predicted;

double p_dot_mse;

double sum_squared_diff(gsl_vector «left, gsl_vector =right){
gsl_vector_sub(left, right); //destroys the left vector
return apop_vector_map_sum(left, gsl_pow_2);

}

gsl_vector #project(apop_data :d, apop_model #m){
return apop_dot(d, m—>parameters, 0, ’v’)—>vector;

}

double cook_math(apop_data =reduced){
apop_model =r = apop_estimate(reduced, apop_ols);
double out =sum_squared_diff(project(ols_data, r), predicted)/p_dot_mse;
apop_model_free(r);
return out;

}

gsl_vector *cooks_distance(apop_model xin){
apop_data *c = apop_data_copy(in—>data);
apop_ols.prep(in—>data, in);
ols_data = in—>data;
predicted = project(in—>data, in);
p_dot_mse = c—>matrix—>size2 % sum_squared_diff(in—>data—>vector, predicted);
return jack_iteration(c—>matrix, cook_math);

}

int main(){
apop_data *dataset = apop_text_to_data("data—regressme", 0, 1);
apop_model xest = apop_estimate(dataset, apop_ols);
printf("plot *—"\n");
strcpy (apop_opts.output_delimiter, "\n");
apop_vector_show(cooks_distance(est));

}

Listing 4.7 Calcluate the Cook’s distance, by running 3,200 regressions. Compile with
jackiteration.c. Online source: cooks.c.

line a function of its own, we hide some of the details and get a self-documenting
indication of the code’s intent.

e The cook_math function calculates Equation 4.4.1 for each value of i. It is not
called directly, but is passed to jack_iteration, which will apply the function to
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each of its 3,200 submatrices.

* The cooks_distance function produces two copies of the data set: an untainted
copy ¢, and a regression-style version with the dependent variable in the vector
element of the data set, and the first column of the matrix all ones.

* After main calls cooks_distance, which calls the various linear algebra proce-
dures and jack_iteration, which calls cook_math for each submatrix, we have
a list of the Cook’s distance for every point in the set, which we can use to search
for outliers.

e The main function produces Gnuplot-ready output, so run this using, e.g., . /cook
| gnuplot -persist.Some researchers prefer to sort the data points before plot-
ting; i.e., try sending the output vector to gsl_vector_sort before plotting.

Add some bad data points to the data-regressme file, like 1|11, to sim-
Q 46 ulate outliers or erroneous data. Does the Cook’s distance of the bad data
stand out as especially large?

MATRIX INVERSION AND Inverting a matrix requires significantly more computa-
EQUATION SOLVING tion than the element-by-element operations above. But
here in the modern day, it is not such a big deal: my old
laptop will invert a 1,000 x 1,000 matrix in about ten seconds, and does the in-
version step for the typical OLS regression, around a 10 x 10 matrix at the most,

in well under the blink of an eye.

Apophenia provides functions to find determinants and inverses (via the GSL
and BLAS’s triangular decomposition functions), named apop_matrix_inverse,
apop_matrix_determinant, and for both at once, apop_det_and_inv. Exam-
ples for using this function are located throughout the book; e.g., see the calcula-
tion of OLS coefficients on page 280.

Sometimes, you do not have to bother with inversion. For example, we often write
the OLS parameters as 3 = (X'X)~!(X"Y), but you could implement this as
solving (X’X)3 = X'Y, which involves no inversion. If xpx is the matrix X'X
and xpy is the vector X'Y, then gsl_linalg_HH_solve(xpx, xpy, betav)
will return the vector (3.

» apop_data - apop_data: apop_dot.
z » Vector - vector: gsl_blas_ddot.

» Inversion: apop_matrix_inverse, apop_matrix_determinant, or
apop_det_and_inv.
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4.5 NUMBERS Floating-point numbers can take several special values, the most

important of which are INFINITY, - INFINITY, and NAN.'3 Data-
oriented readers will mostly be interested in NAN (read: not a number), which is an
appropriate way to represent missing data. Listing 4.8 shows you the necessary vo-
cabulary. All four if statements will be true, and print their associated statements.

#include <math.h> //NaN handlers
#include <stdio.h> //printf

int main(){
double missing_data = NAN;
double big_number = INFINITY;
double negative_big_number = —INFINITY;
if (isnan(missing_data))
printf("missing_data is missing a data point.\n");
if (isfinite(big_number)== 0)
printf("big_number is not finite.\n");
if (isfinite(missing_data)== 0)
printf("missing_data isn’t finite either.\n");
if (isinf(negative_big_number)== —1)
printf("negative_big_number is negative infinity.\n");

Listing 4.8 Some functions to test for infinity or NaNs. Online source: notanumber. c.

Because floating-point numbers can take these values, division by zero won’t crash
your program. Assigning double d = 1.0/0.0 will result in d == INFINITY,
andd = 0.0/0.0 will result in d being set to NAN. However, integers have none
of these luxuries: try int i = 1/0 and you will get something in the way of
Arithmetic exception (core dumped).

Comparison to an NAN value always fails:

double blank = NAN;

blank == NAN; // This evaluates to false.

blank ==blank; // This evaluates to false. (!)

isnan (blank); // Returns 1: the correct way to check for an NaN value.

3pedantic note on standards: These values are defined in the C99 standard (§7.12) only on machines that
support the IEEE 754/IEC 60559 floating-point standards, but since those standards are from 1985 and 1989,
respectively, they may be taken as given: to the best of my knowledge, all current hardware supports INFINITY
and NAN. Recall that gcc requires -std=gnu99 for C99 features; otherwise, the GSL provides GSL_POSINF,
GSL_NEGINF, and GSL_NAN that work in non-C99 and non-IEEE 754 systems.
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GSL constant  approx. GSL constant  approx.
e M_E 271828 | w M_PI 3.14159
logq e M_LOG2E 1.44270 | /2 M_PI_2 1.57080
logpe M_LOG10E 0.43429 | w/4 M_PI_4 0.78540
In2 M_LN2 0.69315 | 1/« M_1_PI 0.31831
In 10 M_LN10 2.30259 | 2/7 M_2_PI 0.63662
V2 M_SQRT2 1.41421 | /T M_SQRTPI 1.77245
V1/2=1/v2  M_SQRT1_2  0.70711 | 2/\/m M_2_SQRTPI  1.12838
V3 M_SQRT3 1.73205 | Inw  M_LNPI 1.14473
Euler constant (y) M_EULER 0.57722

Table 4.9 The GSL defines a number of useful constants.

% Predefined constants  There are a number of useful constants that are defined

by the GSL (via preprocessor #defines); they are listed

in Table 4.9.'% It is generally better form to use these constants, because they are

more descriptive than raw decimal values, and they are defined to greater precision
than you will want to type in yourself.

PRECISION As with any finite means of writing real numbers, there is a roundoff er-

ror to the computer’s internal representation of numbers. The computer

basically stores non-integer numbers using scientific notation. For those who have

forgotten this notation, 7 is written as 3.14159 x 10°, or 3.14159e0, and 1007 as

3.14159 x 102, or 3.14159e2. Numbers always have exactly one digit before the
decimal point, and the exponent is chosen to ensure that this is the case.

Your computer works in binary, so floating-point numbers (of type float and
double) are of the form d x 2", where d is a string of ones and zeros and n is an
exponent.'”

The scale of a number is its overall magnitude, and is expressed by the exponent n.
The floating-point system can express a wide range of scales with equal ease: it is
as easy to express three picometers (3e—12) as three million kilometers (3¢9). The
precision is how many significant digits of information are held in d: 3.14e—12
and 3.14e9 both have three significant decimal digits of information.

There is a fixed space for d, and when that space is exceeded, n is adjusted to suit,
but that change probably means a loss in precision for d. To give a small base-ten

14The GSL gets most of these constants from BSD and UNIX, so you may be able to find them even when the
GSL is not available. The exceptions are M_SQRT3 and M_SQRTPI, which are GSL-specific.

I5This oversimplifies some details that are basically irrelevant for users. For example, the first digit of d is
always one, so the computer normally doesn’t bother storing it.
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100  1.26765e4+30  7.88861le—31
200  1.60694e+60  6.22302e—61
300  2.03704e+90  4.90909e—91
400  2.58225e+120 3.87259e—121
500  3.27339e+150 3.05494e—151
600  4.14952e+180 2.40992e—181
700  5.26014e+210 1.90109e—211
800  6.66801e+240 1.4997e—241
900  8.45271e+270 1.18305e—271
1000 1.07151e+301 9.33264e—302
1100 inf 0

1200 inf 0

Table 4.10 Multiplying together large columns of numbers will eventually fail.

example, say that the space for d is only three digits; then 5.89e0 x 892e0 = 525¢1,
though 5.89 x 892 = 5, 254. The final four was truncated to zero to fit d into its
given space.

Precision can easily be lost in this manner, and once lost can never be regained.
One general rule of thumb implied by this is that if you are writing a precision-
sensitive function to act on a float, use double variables internally, and if you
are taking in doubles, use long double internally.

The loss of precision becomes especially acute when multiplying together a long
list of numbers. This will be discussed further in the chapter on maximum likeli-
hood estimation (page 330), because the likelihood function involves exactly such
multiplication. Say that we have a column of a thousand values each around a half.
Then the product of the thousand elements is about 27109 which strains what a
double can represent. Table 4.10 shows a table of powers of two as represented
by a double. For ¢ > 1,000—a modest number of data points—a double throws
in the towel and calls 2° = oo and 2~% = 0. These are referred to as an overflow
error and underflow error, respectively.

For those who would like to try this at home, Listing 4.11 shows the code used to
produce this table, and also repeats the experiment using a long double, which
doesn’t give up until over 16,000 doublings and halvings.



gsl_stats March 24, 2009

138 CHAPTER 4

#include <math.h>
#include <stdio.h>

int main(){
printf("Powers of two held in a double:\n");
for(int i=0; i< 1400; i+=100)
printf("%i\t %g \t %g\n", i, 1dexp(1,i), 1dexp(1,—1));
printf("Powers of two held in a long double:\n");
for(int i=0; i< 18000; i+=1000)
printf("%i\t %Lg \t %Lg\n", i, 1dexpl(1,i), 1dexpl(1,—1));
}

Listing4.11 Find the computer’s representation of 2° and 27 for large i. Online source:
powersoftwo.c.

The program uses the 1dexp family of functions, which manipulate the floating-
point representation of a number directly (and are thus probably bad form).

The printf format specifier for the long double type is %Lg.'¢

The solution to the problem of finding the product of a large number of elements
is to calculate the log of the product rather than the product itself; see page 330.

If you need to calculate 7 to a million decimal points, you will need to find a
library that can work with numbers to arbitrary precision. Such libraries typi-
cally work by representing all numbers as a data structure listing the ones place,
tens place, hundreds place, ..., and then extending the list in either direction as
necessary. Another alternative is rational arithmetic, which leaves all numbers in
(int)/(int) form for as long as possible. Either system will need to provide its
own add/subtract/multiply/divide routines to act on its data structures, rather than
using C’s built-in operators. Unfortunately, the added layer of complexity means
that the arithmetic operations that had been fast procedures (often implemented via
special-purpose registers on the processor hardware itself) are now a long series of
library calls.

So to do math efficiently on large matrices, we are stuck with finite precision, and
therefore must not rely too heavily on numbers after around maybe four significant
digits. For the purposes of estimating and testing the parameters of a model using
real-world data, this is OK. If two numbers differ only after eight significant dig-
its (say, 3.14159265 versus 3.14159268), there is rarely any reason to take these
numbers as significantly different. Even if the hypothesis test indicates that they
are different, it will be difficult to convince a referee of this.

16The %g and %Lg format specifiers round off large values, so change them to to % and %L to see the precise
value of the calculations without exponential notation.
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CONDITIONING Most matrix routines do badly when the determinant is near zero,

or when eigenvalues are different orders of magnitude. One way

to cause such problems with your own data is to have one column that is of the

order of 1 x 10'° and another that is on the order of 1 x 1079, In finite-precision

arithmetic on two numbers of such wide range, the smaller number is often simply
swallowed: 3.14e10 + 5.92e-10 = 3.14el0.

Thus, try to ensure that each column of the data is approximately of the same
order of magnitude before doing calculations. Say that you have a theory that mean
fingernail thickness is influenced by a location’s population. You could modify the
scale when pulling data from the database,

select population/1000., nail_thickness=1000.
from health_data;

or you could modify it in the gsl_matrix:

APOP_COL(data, 0, pop)
gsl_vector_scale(pop, 1/1000.);
APOP_COL(data, 1, nails)
gsl_vector_scale(nails, 1000.);

These notes about conditioning are not C-specific. Any mathematics package that
hopes to work efficiently with large matrices must use finite-precision arithmetic,
and will therefore have the same problems with ill-conditioned data matrices. For
much more about precision issues and the standard machine representation of num-
bers, see Goldberg (1991).

COMPARISON  Floating-point numbers are exact representations of a real number
with probability zero. Simply put, there is a bit of fuzz, so expect
every number to be a little bit off from where it should be.

It is normally not a problem that 4 4+ 1le—20 # 4, and such fuzz can be safely
ignored, but Polhill et al. (2005) point out that the fuzziness of numbers can be
a problem for comparisons, and those problems can create odd effects in simu-
lations or agent-based models. After a long series of floating-point operations, a
comparison of the form (t == 0) will probably not work. For example, Listing
4.12 calculates 1.2 — 3 - 0.4 using standard IEEE arithmetic, and finds that it is less
than zero.!’

There are labor-intensive solutions to the problem, like always using long ints

17This example is from a web site affiliated with the authors of the above paper, at http://www.macaulay.
ac.uk/fearlus/floating-point/.
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#include <stdio.h>

int main(){
double t=1.2;
t—=0.4;
t—=0.4;
t—=0.4;
if (t<0)
printf ("By the IEEE floating—point standard, 1.2 — 3%.04 < 0.\n");
}

Listing 4.12 The IEEE standard really does imply that 1.2 — 3 - 0.4 < 0. Online source: fuzz.c.

for everything,'® but the most sensible solution is to just bear in mind that no
comparison is precise so, for example, agents should not die when their wealth is
zero, but when it is less than maybe 1le—6. Otherwise, the model should be robust
to agents who have an iota of negative wealth.

» Floating-point numbers can take on values of -INFINITY, INFINITY,
and NAN.

» Multiplying together a column of a thousand numbers will break, so
get the log of the product by summing the logs of the column’s ele-
ments.

z » Reporting results based on the fifth significant digit (or so) is spuri-
ous.

» Try to keep the scale of your variables within a factor of about a
thousand of each other.

» Exact comparisons of floating-point numbers can fail, so do not test
f == 0,but fabs(f) < le-6 (or so).

4.6 xgsl_matrix AND gsl_vector First, a warning: the intent of this sec-
INTERNALS tion is not to show you how to circum-

vent the GSL’s access functions such as

gsl_matrix_get and gsl_vector_set. Doing so is bad form, inviting errors and
making code more difficult to read.!® Instead, these notes will be useful to you for

I18Recall that (a/b)*b + a%b is exactly a for long int a, b,b# 0.
91¢ you are really concerned about the overhead from these functions, then #define GSL_RANGE_CHECK_-
OFF, either via that preprocessor directive or adding -DGSL_RANGE_CHECK_OFF to your compilation com-
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understanding why the data structures are the way they are, and giving you a han-
dle on what operations are easy and what operations are difficult.

Here is the relevant section of the declaration of the gs1_matrix structure:
typedef struct {
size_t sizel;
size_t size2;
size_t tda;
double : data;
[..]
int owner;
} gsl_matrix;

(0,0)(0,1)...(0,9) (1,0) (1, 1) ...(1,9) (2,00 (2, 1) ...(2,9) ...(9,0) (9, 1) ...(9,9)
U
0,00 (0,1) (02 (03 (04 (@©5 (@©6) (©O7) (08 (09
(Lo (1.1 (12 @3 1€4 (@5 @€,6 A7 (@€.8 (19
20 @) 22|23 249 @25 @6 27 28 |29
30 @G1) (32|63 G4 @G5 @6 G7 398 | 3Y
40 @) @2 | 43 44 @5 @6 @& @8 | 49
G0 G B2 | 53 G4 GS 66 6T B8 | (59
6,00 (6,1) (6,2) (63) (64) (6,5 (6,6) (6,7) (6,8 (69
70 1) 72 @3 749 75 @6 17 (@18 (19
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90 O 62 O3 04 OS5 06) O 18 VY
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Figure 4.13 Within a submatrix, the (3,4) element is still one step from the (3,3) element, and ten
steps from the (2,4) element.

As you know, sizel and size2 are simply the count of rows and columns. The
data pointer is a single pointer to a stream of numbers. Since memory addresses
are linear, the top of Figure 4.13 is closer to what is actually in memory: the first
row of data, followed immediately afterward by the second row, then the third row,
and so on, forming one long row of data. By adding line breaks, we humans can
think of this one long row of data as actually being a grid, like the second half of
Figure 4.13.

Stepping along the row means simply stepping along by sizeof (double) units,
and stepping down a matrix column means stepping by sizeof (double)* size2
steps from the current element. For example, to reach the (3,5) element of a ten by
ten matrix, the processor must skip three rows and then skip five items, so it would
jump sizeof (double)*35 steps from the base element.

Modern computers are proactive about data gathering. When they read data from
slower types of memory, they also check the neighbors as well. If the code is rel-
atively predictable, the system can gather the next bit of data at the same time as

mand line. Between this and the compiler’s optimization routines, the function call will reduce to the appropriate
array operation.
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it is crunching the current data element. The gsl_matrix structure works won-
derfully with such a system, because steps are predictable and of fixed size, so the
processor has a good chance of correctly guessing what data to put into its faster
caches.

Now say that we have a 100 x 10 matrix, which would have the following infor-
mation:

sizel = 100;

size2 = 10;

tda = 10;

data = [location of (0,0)];
owner =1;

With tda equal to size2, jumping down a column would require a jump of size-
of (double) *tda.?”

If we wanted to pull out the 4 x 6 submatrix that begins at (3, 2), then the resulting
submatrix data would look like this:

sizel =4;

size2 = 6;

tda = 10;

data = [location of (3,2) in the original matrix];
owner =0;

We can use this matrix exactly as with the full matrix: For example, to get the third
elements in the first row, we would step sizeof (double) * 2 forward from the
base element pointed to by data, and to get to the beginning of the next column,
we would jump sizeof (double)*tda. Thus, the process of pulling a subset of
the data merely required finding the first point and writing down arbitrary limits
for sizel and size2. No actual data was copied. This is how gsl_matrix_row,
APOP_ROW, APOP_COL, APOP_SUBMATRIX, and other such routines work.

The owner variable now becomes important, because there could be multiple sub-
matrices all pointing to the same data. Since the submatrix is not the owner of its
data, the GSL will not allow it to free the data set to which it points.

The gsl_vector has a similar structure, including a starting point and a stride to
indicate how far to jump to the next element. Thus, taking a row or column subset

of a matrix also merely requires writing down the correct coordinates and lengths.

The GSL’s structures are good for fast access, because the next element is always

20The abbreviation tda stands for trailing dimension of array. For a gs1_vector, the analogous element is
the stride.
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a fixed jump relative to the current element, whether you are traversing by rows or
columns. They are exceptionally good for describing submatrices and subvectors,
because doing so merely requires writing down new coordinates. They handle a
1 x 10,000 matrix just as easily as a 10,000 x 1 matrix or a 100 x 100 matrix.

They are not good for non-contiguous subsets like the first, second, and fifth
columns of a data set, since the relative jumps from one column to the next are
not identical. Similarly, they are not good for holding various types of data, where
some jumps could be sizeof (int) and others could be sizeof (double). Also,
since space is always allocated for every element, there is no way to efficiently
represent sparse matrices.

Systems that deal well with variable-sized jumps have the pros and cons reversed
from the above. For example, one solution is to let the overall table be a list of
column vectors, where each column has its own type. But traversing along a row
could involve jumping all over memory, so common operations like finding the
sum for each row becomes a significantly slower operation.

Other designers with different goals have used different means of representing a
data matrix, and the gs1_matrix is by no means the best for all needs. But it does
very well for the goal of allowing the hardware to process rows and columns of
homogeneous data with maximal efficiency.

» The GSL’s matrix and vector structures are very good for efficient
computation, because each element has a fixed size and is a fixed
distance from the neighboring elements.

» It is very easy to take contiguous subvectors or submatrices of these
z structures. Doing so requires copying only a few bits of metadata, but
not the data itself.

» There is no simple way to take non-contiguous subsets of gsl_-
matrices or gsl_vectors. You will either need to copy the data
manually (i.e., using a for loop), or do the manipulations in the da-
tabase before your data is in gsl_matrix form.

4.7 MODELS Recall the one-sentence summary of statistical analysis from the

first page of the introduction: estimate the parameters of a model

using data. The Apophenia library provides functions and data structures at exactly

this level of abstraction, in the form of the apop_model and apop_data structures
and the functions that operate on them.



gsl_stats March 24, 2009

144 CHAPTER 4

You have already met the apop_data structure, which lent a hand to operations
on the matrix algebra layer of abstraction; the remainder of the chapter introduces
the apop_model structure, which provides similar forms of strength through con-
straint: it encapsulates model information in a uniform manner, allows models to
be used interchangeably in functions that can take any model as an input, and al-
lows sensible defaults to be filled in as necessary.

A great deal of statistical work consists of converting or combining existing models
to form new ones. That is, models can be filtered to produce models just as data
can be filtered to provide new information. We can read estimation as filtering an
un-parameterized model into a parameterized one. Bayesian updating (discussed
more thoroughly on page 258) takes in a prior model, a likelihood function, and
data, and outputs a new model-—which can then be used as the input to another
round of filtering when new data comes in.

Another example discussed below, is the imposition of a constraint: begin by esti-
mating a general model, then generate a new model with a constraint imposed on
some of the parameters, and re-estimate. The difference in log likelihoods of the
constrained and unconstrained models can then be used for hypothesis testing.

The structure of the model struct  In the usage of this book, a model intermedi-
ates between data and parameters. From there,
the model can go in three directions:

i) X = B: Given data, estimate parameters.

ii) B = X: Given parameters, generate artificial data (e.g., make random draws
from the model, or find the expected value).

iii) (X,8) = p: Given both data and parameters, estimate their likelihood or
probability.

To give a few examples, form (i) is the descriptive problem, such as estimating a
covariance or OLS parameters. Monte Carlo methods use form (ii): producing a
few million draws from the model given fixed parameters. Bayesian estimation is
based on form (iii), describing a posterior probability given both data and param-
eters, as are the likelihoods in a maximum likelihood estimation.

For many common models, there are apop_models already written, including dis-
tributions like the Normal, Multivariate Normal, Gamma, Zipf, et cetera, and gen-
eralized linear models like OLS, WLS, probit, and logit. Because they are in a
standardized form, they can be sent to model-handling functions, and be applied
to data in sequence. For example, you can fit the data to a Gamma, a Lognormal,
and an Exponential distribution and compare the outcomes (as in the exercise on
page 257).
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Every model can be estimated via a form such as

[apop_model xest = apop_estimate(data, apop_normal);

Examples of this form appear throughout the book—have a look at the code later
in this section, or on pages 133, 289, 352, or 361, for example.

Discussion of the other directions—making random draws of data given parame-
ters and finding likelihoods given data and parameters—will be delayed until the
chapters on Monte Carlo methods and maximum likelihood estimation, respec-
tively.

Changing the defaults A complete model includes both the model’s functions and

the environment in which those functions are evaluated

(Gentleman & Thaka, 2000). The apop_model thus includes both the outputs, the

functions, and everything one would need to replicate one from the other. For the

purposes of Apophenia’s model estimations, an N (0, 1) is a separate model from

an N (1, 2), and a maximum likelihood model whose optimization step is done via

a conjugate gradient method is separate from an otherwise identical model esti-
mated via a simplex algorithm.

But a generic struct indended to hold settings for all models faces the complica-
tion that different methods of estimation require different settings. The choice of
conjugate gradient or simplex algorithm is meaningless for an instrumental vari-
able regression, while a list of instrumental variables makes no sense to a maxi-
mum likelihood search.

Apohenia standard apop_model struct thus has an open space for attaching differ-
ent groups of settings as needed. If the model’s defaults need tweaking, then you
can first add an MLE, OLS, histogram, or other settings group, and then change
whatever details need changing within that group. Again, examples of the usage
and syntax of this two-step processs abound, both in online documentation and
throughout the book, such as on pages 153, 339, or 352.

Writing your own It would be nice if we could specify a model in a single form

and leave the computer to work out the best way to implement

all three of the directions at the head of this section, but we are rather far from

such computational nirvana. Recall the example of OLS from the first pages of

Chapter 1. The first form of the model—find the value of 3 such that (y — X3)?

is minimized—gave no hint that the correct form in the other direction would be

(X'X)~1X"y. Other models, such as the probit model elaborated in Chapter 10,
begin with similar X3-type forms, but have no closed form solution.
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Thus, writing down a model for a computable form requires writing down a pro-
cedure for one, two, or all three of the above directions, such as an estimate
function, a log_likelihood and p (probability) function, and a draw function to
make random draws. You can fill in those that you can solve in closed form, and
can leave Apophenia to fill in computationally-intensive default procedures for the
rest.

#include <apop.h>
apop_model new_OLS;

static apop_model =new_ols_estimate(apop_data =d, apop_model xparams){
APOP_COL(d, 0, v);
apop_data xydata = apop_data_alloc(d—>matrix—>sizel, 0, 0);
gsl_vector_memcpy(ydata—>vector, v);
gsl_vector_set_all(v, 1); Zaffine: first column is ones.
apop_data «xpx = apop_dot(d, d, ’t’, 0);
apop_data xinv = apop_matrix_to_data(apop_matrix_inverse(xpx—>matrix));
apop_model xout = apop_model_copy(new_OLS);
out—>data = d;
out—>parameters = apop_dot(inv, apop_dot(d, ydata, 1), 0);
return out;

}

apop_model new_OLS = {.name ="A simple OLS implementation",
.estimate = new_ols_estimate };

int main(){
apop_data :dataset = apop_text_to_data("data—regressme", 0, 1);
apop_model xest = apop_estimate(dataset, new_OLS);
apop_model_show (est);

Listing 4.14 A new implementation of the OLS model. Online source: newols.c.

For example, listing 4.14 shows a new implementation of the OLS model. The
math behind OLS is covered in detail on page 274.

In this case, only the estimate function is specified.

The procedure itself is simply a matter of pulling out the first column of data and
replacing it with ones, and calculating (X'X) ™' X'y.

Lines 12—14 allocate an apop_model and set its parameter element to the correct
value. Line 13 keeps a pointer to the original data set, which is not used in this
short program, but often comes in handy.

The allocation of the output on line 12 needs the model, but we have not yet de-
clared it. The solution to such circularity is to simply give a declaration of the
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model on line 3.

* Given the function, line 18 initializes the model itself, a process which is rather
simple thanks to designated initializers (see p 32).

* Although the main function is at the bottom of this file, the typical model deserves
its own file. By using the static keyword in line five, the function name will
only be known to this file, so you can name it what you wish without worrying
about cluttering up the global name space. But with is a pointer to the function
in the model object itself, a routine in another file could use the apop_new_-
OLS.estimate(...) form to call this function (which is what apop_estimate
on line 23 will do internally).

* Lines 1-3 provide the complete header an external file would need to use the new
model, since the structure of the apop_model is provided in apop.h.

Compare the new_0LS model with the apop_ols model.

* Modify Listing 4.14 to declare an array of apop_models. Declare
the first element to be apop_ols and the second to be new_0LS.
[The reverse won’t work, because new_0LS destroys the input data.]

Q4 ; * Write a for loop to fill a second array of pointers-to-models with the
estimate from the two models.

* Calculate and display the difference between
estimate[0] ->parameters->vector and
estimate[1]->parameters->vector.

% AN EXAMPLE: NETWORK DATA The default, for models such as apop_ols or

apop_probit, is that each row of the data is

assumed to be one observation, the first column of the data is the dependent vari-
able, and the remaining columns are the independent variable.

For the models that are merely a distribution, the rule that one row equals one
observation is not necessary, so the data matrix can have any form: 1 x 10,000, or
10,000 x 1, or 100 x 100. This provides maximum flexibility in how you produce
the data.

But for data describing ranks (score of first place, second place, ...) things get
more interesting, because such data often appears in multiple forms. For example,
say that we have a classroom where every student wrote down the ID number his
or her best friend, and we tallied this list of student numbers:
11222234446777.

First, we would need to count how often each student appeared:
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In SQL:

select id_no, count(x) as ct
from surveys
group by id_no
order by ct desc

If we were talking about city sizes (another favorite for rank-type analysis), we
would list the size of the largest city, the second largest, et cetera. The labels are
not relevant to the analysis; you would simply send the row of counts for most
popular, second most popular, et cetera:

433211.

Each row of the data set would be one classroom like the above, and the column
number represents the ranking being tallied.

As mentioned above, you can add groups of settings to a model to tweak its be-
havior. In the case of the models commonly used for rank analysis, you can signal
to the model that it will be getting rank-ordered data. For example:

apop_model xrank_version = apop_model_copy (apop_zipf);
Apop_settings_add_group (rank_version, apop_rank, NULL);
apop_model_show (apop_estimate(ranked_draws, rank_version));

Alternatively, some data sets are provided with one entry listing the rank for each
observation. There would be four 1’s, three 2’s, three 3’s, et cetera:
11112223334455.

In the city-size example, imagine drawing people uniformly at random from all
cities, and then writing down whether each person drawn is from the largest city,
the second largest, et cetera. Here, order of the written-down data does not matter.
You can pass this data directly to the various estimation routines without adding a
group of settings; e.g., apop_estimate (ranked_draws, apop_gamma).
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The nominee column in the file data-classroom is exactly the sort of data
on which one would run a network density analysis.

¢ Read the data into a database.

* Query the vector of ranks to an apop_data set, using a query like the
one above.

@4'8 * Transpose the matrix (hint: gsl_matrix_transpose_memcpy), be-
cause apop_zipf’s estimate function requires each classroom to be
a row, with the nth-ranked in the nth column. This data set includes
only one classroom, so you will have only one row of data.

* Call apop_estimate(yourdata, apop_zipf); show the resulting
estimate. How well does the Zipf model fit the data?

% MLE MODELS To give some examples from a different style of model, here are
some notes on writing models based on a maximum likelihood
estimation.

¢ Write a likelihood function. Its header will look like this:

[Static double apop_new_log_likelihood(gsl_vector xbeta, apop_data :d)

Here, beta holds the parameters to be maximized and d is the fixed parameters—
the data. This function will return the value of the log likelihood function at the
given parameters and data.

In some cases, it is more natural to express probabilities in log form, and some-
times in terms of a plain probability; use the one that works best, and most func-
tions will calculate the other as needed.

¢ Declare the model itself:

apop_model new_model = {"The Me distribution", 2, 0, 0,
Jlog_likelihood = new_log_likelihood };

— If you are using a probability instead of a log likelihood, hook it into your
model with .p = new_p.

— The three numbers after the name are the size of the parameter structure,
using the same format as apop_data_alloc: size of vector, rows in ma-
trix, then columns in matrix. If any of these is -1, then the -1 will be re-
placed with the number of columns in the input data set’s matrix (i.e., your_ -
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data->matrix->size2).?! This is what you would use for an OLS regres-
sion, for example, where there is one parameter per independent variable.

With this little, a call like apop_estimate (your_data, new_model) will work,
because apop_estimate defaults to doing a maximum likelihood search if there
is no explicitly-specified new_model . estimate function.

* For better estimations, write a gradient for the log likelihood function. If you do
not provide a closed-form gradient function, then the system will fill in the blank
by numerically estimating gradients, which is slower and has less precision. Cal-
culating the closed-form gradient is usually not all that hard anyway, typically
requiring just a few derivatives. See Listing 4.17 (or any existing apop_model) for
an example showing the details of syntax.

SETTING CONSTRAINTS A constraint could either be imposed because the author

of the model declared an arbitrary cutoff (‘we can’t spend

more than $1,000.”) or because evaluating the likelihood function fails (In(—1)).

Thus, the system needs to search near the border, without ever going past it, and it

needs to be able to arbitrarily impose a constraint on an otherwise unconstrained
function.

Apophenia’s solution is to add a constraint function that gets checked before the
actual function is evaluated. It does two things if the constraint is violated: it
nudges the point to be evaluated into the valid area, and it imposes a penalty to
be subtracted from the final likelihood, so the system will know it is not yet at an
optimum. The unconstrained maximization routines will then have a continuous
function to search but will never find an optimum beyond the parameter limits.>?

To give a concrete example, Listing 4.15 adds to the apop_normal model a con-
straint function that will ensure that both parameters of a two-dimensional input
are greater than given values.

Observe how the constraint function manages all of the requisite steps. First, it
checks the constraints and quickly returns zero if none of them binds. Then, if
they do bind, it sets the return vector to just inside the constrained region. Finally,
it returns the distance (on the Manhattan metric) between the input point and the
point returned.?® The unconstrained evaluation system should repeatedly try points
closer and closer to the zero-penalty point, and the penalty will continuously de-
cline as we approach that point.

2lif your model has a more exotic parameter count that needs to be determined at run-time, use the prep
method of the apop_model to do the allocation.

22This is akin to the common penalty function methods of turning a constrained problem into an unconstrained
one, as in Avriel (2003), but the formal technique as commonly explained involves a series of optimizations where
the penalty approaches zero as the series progresses. It is hard to get a computer to find the limit of a sequence;
the best you could expect would be a series of estimations with decreasing penalties; apop_estimate_restart
can help with the process.

231f you need to calculate the distance to a point in your own constraint functions, see either apop_vector_-
distance or apop_vector_grid_distance.
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#include <apop.h>

double linear_constraint(apop_data  d, apop_model sm){
double limit0 = 2.5,
limitl =0,
tolerance = le—3; // or try GSL_EPSILON_DOUBLE
double beta0 = apop_data_get(m—>parameters, 0, —1),
betal = apop_data_get(m—>parameters, 1, —1);
if (beta0 > limit0 && betal > limitl)
return 0;
/lelse create a valid return vector and return a penalty.
apop_data_set(m—>parameters, 0, —1,GSL_MAX(limit0 + tolerance, beta0));
apop_data_set(m—>parameters, 1, —1, GSL_MAX(limit1 + tolerance, betal));
return GSL_MAX(limit0 + tolerance — beta0, 0)
+ GSL_MAX(limit] + tolerance — betal, 0);

}

int main(){
apop_model :xconstrained = apop_model_copy(apop_normal);
constrained—>estimate = NULL;
constrained—>constraint = linear_constraint;
apop_db_open("data—climate.db");
apop_data =dataset = apop_query_to_data("select pcp from precip");
apop_model =free = apop_estimate(dataset, apop_normal);
apop_model xconstr = apop_estimate(dataset, =constrained);
apop_model_show(free);
apop_model_show/(constr);
double test_stat = 2 x (free—>llikelihood — constr—>llikelihood);
printf("Reject the null (constraint has no effect) with %g%% confidence\n",
gsl_cdf_chisq_P(test_stat, 1)%100);
}

Listing 4.15 An optimization, a constrained optimization, and a likelihood ratio test comparing the
two. Online source: normallr.c.

In the real world, set linear constraints using the apop_linear_constraint func-
tion, which takes in a set of contrasts (as in the form of the F' test) and does all
the requisite work from there. For an example of its use, have a look at the budget
constraint in Listing 4.17.

The main portion of the program does a likelihood ratio test comparing constrained
and unconstrained versions of the Normal distribution.

Lines 19-21 copy off the basic Normal model, and add the constraint function to
the copy. The estimate routine for the Normal doesn’t use any constraint, so it is
invalid in the unconstrained case, so line 20 erases it.

Lacking an explicit estimate routine in the model, line 25 resorts to maximum
likelihood estimation (MLE). The MLE routine takes the model’s constraint into
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account.

» Lines 28-29 are the hypothesis test. Basically, twice the difference in log likeli-
hoods has a x? distribution; page 350 covers the details.

AN EXAMPLE: UTILITY MAXIMIZATION The process of maximizing a function

subject to constraints is used extensively

outside of statistical applications, such as for economic agents maximizing their

welfare or physical systems maximizing their entropy. With little abuse of the opti-

mization routines, you could use them to solve any model involving maximization

subject to constraints. This section gives an extended example that numerically
solves an Econ 101-style utility maximization problem.

The consumer’s utility from a consumption pair (z1,z2) is U = w?xg . Given
prices P; and P, and B dollars in cash, she has a budget constraint that requires
Pix1+ Pyxoy < B. Her goal is to maximize utility subject to her budget constraint.

The data (i.e., the apop_data set of fixed elements) will have a one-element vector
[ budget | price; « ]

and a 2 x 2 matrix, structured like this: )
prices [

Once the models are written down, the estimation is one function call, and calcu-
lating the marginal values is one more. Overall, the program is overkill for a prob-
lem that can be solved via two derivatives, but the same framework can be used
for problems with no analytic solutions (such as for consumers with a stochastic
utility function or dynamic optimizations with no graceful closed form).

Because the estimation finds the slopes at the optimum, it gives us comparative
statics, answering questions about the change in the final decision given a marginal
rise in price P, or P, (or both).

Listing 4.16 shows the model via numerical optimization, and because the model
is so simple, Listing 4.17 shows the analytic version of the model.

* The econl101_estimate routine just sets some optimization settings and calls
apop_maximum_likelihood.
* The budget constraint, in turn, is a shell for apop_linear_constraint. That

function requires a constraint matrix, which will look much like the matrix of
equations sent in to the F' tests on page 310. In this case, the equations are

—budget < —p1fi — p2fe
0 < A
0 < B2

All inequalities are in less-than form, meaning that the first—the cost of goods is
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#include <apop.h>
apop_model econ_101;

static apop_model = econ101_estimate(apop_data xchoice, apop_model :p){
Apop_settings_add_group(p, apop_mle, p);
Apop_settings_add(p, apop_mle, tolerance, le—4);
Apop_settings_add(p, apop_mle, step_size, le—2);
return apop_maximum_likelihood(choice, #p);

}

static double budget(apop_data =beta, apop_model:+ m){
double price0 = apop_data_get(m—>data, 0, 0),
pricel = apop_data_get(m—>data, 1, 0),
cash = apop_data_get(m—>data, 0, —1);
apop_data =xconstraint = apop_data_alloc(3, 3, 2);
apop_data_fill(constraint,
—cash, —price0, —pricel,
0.,1.,0.,
0.,0., L.);
return apop_linear_constraint(m—>parameters—>vector, constraint, 0);

}

static double econ101_p(apop_data xd, apop_model :m){
double alpha = apop_data_get(d, 0, 1),
beta = apop_data_get(d, 1, 1),
qty0 = apop_data_get(m—>parameters, 0, —1),
qtyl = apop_data_get(m—>parameters, 1, —1);
return pow(qty0, alpha) = pow(qtyl, beta);
}

apop_model econ_101 = {"Max Cobb—Douglass subject to a budget constraint”, 2, 0, 0,
.estimate = econ101_estimate, .p = econ101_p, .constraint= budget};

Listing 4.16 An agent maximizes its utility. Online source: econ101.c.

less than the budget—had to be negated. However, the next two statemets, 3 is
positive and (35 is positive, are natural and easy to express in these terms. Convert-
ing this system of inequalities into the familiar vector/matrix pair gives

—budget —p1 —p2
0 1 0
0 0 1

* The budget consraint as listed has a memory leak that you won’t notice at this
scale: it re-specifies the constraint every time. For larger projects, you can ensure
that constraint is only allocated once by declaring it as static and initially
setting it to NULL, then allocating it only if it is not NULL.

* The analytic version of the model in Listing 4.17 is a straightforward translation
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#include <apop.h>
apop_model econ_101_analytic;
apop_model econ_101;

#define fget(r, c) apop_data_get(fixed_params, (1), (c))

static apop_model * econ101_analytic_est(apop_data * fixed_params, apop_model :pin){
apop_model :xest = apop_model_copy(econ_101_analytic);
double budget = fget(0, —1), p1 = fget(0, 0), p2 = fget(1, 0),
alpha = fget(0, 1), beta = fget(1, 1);
double x2 = budget/(alpha/beta + 1)/p2,
x1 = (budget — p2xx2)/pl;
est—>data = fixed_params;
est—>parameters = apop_data_alloc(2,0,0);
apop_data_fill(est—>parameters, x1, x2);
est—>llikelihood = log(econ_101.p(fixed_params, est));
return est;

}

static void econ101_analytic_score(apop_data xfixed_params, gsl_vector =xgradient,
apop_model m){
double x1 = apop_data_get(m—>parameters, 0, —1);
double x2 = apop_data_get(m—>parameters, 1, —1);
double alpha = fget(0, 1), beta = fget(1, 1);
gsl_vector_set(gradient, 0, alphaspow(x1,alpha—1)+pow(x2,beta));
gsl_vector_set(gradient, 1, betaxpow(x2,beta—1)xpow(x1,alpha));
}

apop_model econ_101_analytic = {"Analytically solve Cobb—Douglass maximization subject
to a budget constraint",
.vbase =2, .estimate=econ101_analytic_est, .score = econ101_analytic_score };

Listing 4.17 The analytic version. Online source: econ101.analytic.c.

of the solution to the constrained optimization. If you are familiar with Lagrange
multipliers you should have little difficulty in verifying the equations expressed
by the routines. The routines are in the natural slots for estimating parameters and
estimating the vector of parameter derivatives.

* The term score is defined in Chapter 10, at which point you will notice that its
use here is something of an abuse of notation, because the score is defined as the
derivative of the log-utility function, while the function here is the derivative of the
utility function.

» The preprocessor can sometimes provide quick conveniences; here it abbreviates
the long function call to pull parameters to fget. Section 6.4 (page 211) gives the
details of the preprocessor’s use and many caveats.

» The process of wrapping library functions in standardized model routines, and oth-
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#include <apop.h>
apop_model econ_101, econ_101_analytic;

void est_and_score(apop_model m, apop_data sparams){
gsl_vector +marginals = gsl_vector_alloc(2);
apop_model e = apop_estimate(params, m);
apop_model_show(e);
printf("\nThe marginal values:\n");
apop_score(params, marginals, e);
apop_vector_show (marginals);
printf("\nThe maximized utility: %g\n", exp(e—>llikelihood));
}

int main(){
double param_array[] = {8.4, 1, 0.4,
0, 3, 0.6}; /0 is just a dummy.
apop_data xparams = apop_line_to_data(param_array, 2,2,2);
sprintf(apop_opts.output_delimiter, "\n");
est_and_score(econ_101, params);
est_and_score(econ_101_analytic, params);

}

Listing 4.18 Given the models, the main program is but a series of calls. Online source:
econl01.main.c.

erwise putting everything in its place, pays off in the main function in Listing 4.18.
Notably, the est_and_score function can run without knowing anything about
model internals, and can thus run on both the closed-form and numeric-search ver-
sions of the model. It also displays the maximized utility, because—continuing the
metaphor that likelihood=utility—the econ101 model’s maximization returned the
log utility in the 11ikelihood element of the output model.

* The econ101.analytic model calculates the parameters without calculating util-
ity, but there is no need to write a separate calculation to fill it in—just call the
utility calculation from the econ101 model. Thanks to such re-calling of other
models’ functions, it is easy to produce variants of existing models.

* The only public parts of econ101.c and econl101.analytic.c are the models,
so we don’t have to bother with a header file, and can instead simply declare the
models themselves at the top of econ101.main.c.

* The model files will be compiled separately, and all linked together, using a Make-
file as per Appendix A, with an 0BJECTS line listing all three . o files.

Use one of the models to produce a plot of marginal change in zy and x; as
« expands.

Q..
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The apop_model aggregates methods of estimating parameters from
data, drawing data given parameters, and estimating likelihoods given
both.

Most apop_models take in a data structure with an observation on
each row and a variable on each column. If the model includes a de-
pendent variable, it should be the first column.

Given a prepackaged model, you can estimate the parameters of the
model by putting your data into an appropriate apop_data struc-
ture, and then using apop_estimate(data, your_model). This
will produce an apop_model that you can interrogate or display on
screen.

If closed-form calculations for any of the model elements are avail-
able, then by all means write them in to the model. But the various
functions that take apop_models as input make their best effort to
fill in the missing methods. For example, the score function is not
mandatory to use gradient-based optimization methods.
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Graphs are friendly.
—Tukey (1977, p 157)

Graphics is one of the places where the computing world has not yet agreed on a
standard, and so instead there are a dozen standards, including JPG, PNG, PDF,
GIF, and many other TLAs. You may find yourself in front of a computer that
readily handles everything, including quick displays to the screen, or you may find
yourself logging in remotely to a command-line at the university’s servers, that
support only SVG graphics. Some journals insist on all graphics being in EPS
format, and others require JPGs and GIFs.

The solution to the graphics portability problem is to use a handful of external
programs, easily available via your package manager, that take in plain text and
output an image in any of the panoply of graphics formats. The text-to-graphics
programs here are as open and freely available as gcc, so you can be confident that
your code will be portable to new computers. '

But this chapter is not just about a few plotting programs: it is about how you can
control any text-driven program from within C. If you prefer to create graphics or
do other portions of your analytic pipeline using a separate package (like one of
the stats packages listed in the introduction), then you can use the techniques here
to do so.

IThere is some politics about how this is not strictly true: the maintainers of Gnuplot will not allow you to
modify their code and then distribute the modified package independently (i.e., to fork the code base). The project
is entirely unrelated to the GNU project, and the name is simply a compromise between the names that the two
main authors preferred: nplot and llamaplot.
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Appendix B takes a different approach to converting data to an executable script,
via command-line tools to modify text. If your data is not going through any com-
putations or transformations, you may be better off using a shell script as per Ap-
pendix B instead of writing a C program as per this chapter.

The plot-producing program with which this chapter will primarily be concerned
is Gnuplot. Its language basically has only two verbs—set and plot—plus a few
variants (unset, replot, et cetera). To give you a feel for the language, here is a
typical Gnuplot script; you can see that it consists of a string of set commands to
eliminate the legend, set the title, et cetera, and a final plot command to do the
actual work.

unset key

set title "US national debt"
set term postscript color
set out "debt.eps’

plot *data—debt’ with lines

In the code supplement, you will find the plots file, which provides many of the
plots in this chapter in cut-and-paste-able form. You will also find the data-debt
file plotted in this example. But first, here are a few words on the various means of
sending these plot samples to Gnuplot.

PRELIMINARIES As with SQLite or mySQL, there is a command-line interpreter

for Gnuplot’s commands (gnuplot), so you can interactively try

different set commands to see what options look best. After you have finished

shopping for the best settings, you can put them into a script that will always

produce the perfect plot, or better still, write a C program to autogenerate a script
that will always produce the perfect plot.

There are various ways by which you can get Gnuplot to read commands from a
script (e.g., a file named plotme).

* From the shell command line, run gnuplot -persist <plotme. This runs the
script and exits, but the plot persists on the screen. Without the -persist option,
the plot will disappear after a split second. If you are writing to a file rather than
looking at the plot on screen, then the -persist option is unnecessary.

* Run gnuplot with no options, and from its prompt, type load ’plotme’. This
leaves you at the Gnuplot prompt to experiment with settings.

* The hybrid: gnuplot plotme - from the command line. This executes the in-
structions in plotme, but leaves you at the Gnuplot prompt to play with different
settings.
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set term ... Meaning Output goal
x11 Window system; most POSIX OSes display on screen
windows Window system; Windows OSes display on screen
aqua Window system; Mac OS X display on screen
png Portable network graphics browser
gif Graphics interchange format browser, word processor
svg scalable vector graphics browser, word processor
ps Postscript or encapsulated postscript PDF
latex IATEX graphics sub-language IATEX docs

Table 5.1 Some of the terminal types that Gnuplot supports.

If you are at a Gnuplot prompt, you can exit via either the exit command or <ctrl-
d>. On many systems, you can also interact with the plot, spinning 3-D plots with
the mouse or zooming in to selected subregions of 2-D plots.

Check your Gnuplot installation. Write a one-line text file named plotme

whose text reads: plot sin(x). Execute the script using one of the above
Q 5.1 methods. Once that works, try the national debt example above.

If your system is unable to display plots to the screen, read on for alternative

output formats.

set term AND set out Gnuplot defaults to putting plots on the screen, which is

useful for looking at data, but is not necessarily useful for

communicating with peers. Still worse, some systems are not even capable of
screen output. There are many potential solutions to the problem.

The set terminal command dictates the language with which to write the out-
put. Table 5.1 presents the more common options, and Gnuplot’s help system de-
scribes the deatils regarding each of them; e.g., help set term latex or help
set term postscript. The default is typically the on-screen format appropriate
for your system.?

The set out command provides a file name to write to. For example, if a Gnuplot
file has

set term postscript color
set out "a_plot.eps’

2The popular JPG format is not listed because its compression is designed to work well with photographic
images, and makes lines and text look fuzzy. Use it for plots and graphs only as a last resort.
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at its head, then the script will not display to the screen and will instead write the

designated file, in Postscript format.

Comments

Gnuplot follows the commenting standards of many
scripting languages: everything on a line after a # is
ignored. For example, if a script begins with
#set terminal postscript color
#set out ’printme.eps’
then these lines are ignored, and Gnuplot will display
plots on the screen as usual. If you later decide to print
the plot, you can delete the #s and the script will write
to printme.eps.

You can rest assured that no mat-
ter where you are, there is some
way to view graphics, but it may
take some experimentation to find
out how. For example, if you are
dialing in to a remote server, you
may be able to copy the graphics to
a public_html directory, make the
file publicly readable (chmod 644
plot.png) and then view the plot
from a web browser. Or, you could

produce Postscript output, and then run ps2pdf to produe a PDF file, which you

can open via your familiar PDF viewer.

Now that you know how to run a Gnuplot script and view its output, we can move

on to what to put in the script.

5.1 plot The plot command will set the basic shape of the plot.

To plot a basic scatterplot of the first two columns of data in a file, such as the
data-debt file in the online code supplement, simply use plot ’data-debt’.

You will often dump more columns of data to your datafile than are necessary.
For example, the first portion of the data-debt file includes three columns: the
year, the debt, and the deficit. To plot only the first and third columns of data,
use plot ’datafile’ using 1:3. This produces a scatterplot with X values
from column one and Y values from column 3. Notice that Gnuplot uses index
numbering instead of offset numbering: the first column is one, not zero.

Say that you just want to see a single data series, maybe column three; then plot
’datafile’ using 3. With only one column given, the plot will assume that the
X values are the ordinal series 1,2, 3, ... and your data are the Y values.

replot You will often want multiple data sets on the same plot, and Gnuplot does

this easily using the replot command. Just change every use of plot after
the first to replot. Page 170 presents a few more notes on using this function.



gsl_stats March 24, 2009

GRAPHICS 161

set xrange [—4:6]

plot sin(x)

replot cos(x)

replot log(x) + 2#x — 0.5%x#%2

Gnuplot always understands the variable x to refer to the first axis and y to the
second. If you are doing a parametric plot (see the example in Figure 11.4, page
360), then you will be using the variables ¢, u, and v.

Gnuplot knows all of the functions in the standard C math library. For example, the
above sequence will produce a set of pleasing curves. Notice that x**2 is common
math-package notation for x2.

splot The plot command prints flat, 2-D plots. To plot 3-D surfaces, use splot. All

O R

of the above applies directly, but with three dimensions. If your data set has
three columns, then you can plot it with splot ’dataf<le’. If your data set has
more than three columns, then specify the three you want with a form like splot
’datafile’ using 1:5:4.

There is also the crosstab-like case where the data’s row and column dimensions
represent the X and Y axes directly: the (1, 1)st element in the data file is the
height at the Southwest corner of the plot, and the (n,n)th element is the height
at the Northeast corner. To plot such data, use splot ’datafile’ matrix.

Surface plotting goes hand-in-hand with the pm3d (palette-mapped 3-D) option,
that produces a pleasing color-gradient surface. For example, here is a simple ex-
ample that produces the sort of plot used in advertisements for math programs.
Again, if you run this from the Gnuplot prompt and a system that supports it, you
should be able to use the mouse to spin the plot.

set pm3d
splot sin(x) * cos(y) with pm3d

Here is a more extended script, used to produce Figure 5.2. [This example appears
in a slightly-modified form in agentgrid.gnuplot in the code supplement. The
simulation that produced it is available upon request.]

set term postscript color;

set out "plot.eps’;

set pm3d; #for the contour map, use set pm3d map;

unset colorbox

set xlabel ’percent acting’; set ylabel *value of emulation (n)’;
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Figure 5.2 Two views of the same density plot from a few thousand simulations of a group of agents.
Agents act iff ¢; + nk; > C, where t; is a Normally distributed private preference,
k; is the percentage of other people acting, n is the agent’s preference for emulating
others, and C' is a Uniformly-distributed cutoff. The vertical axis shows the density of
simulations with the given percent acting and value of n. When the value of emulation is
low, outcomes are unimodally distributed, but outcomes become bimodally distributed as
emulation becomes more valuable.

set palette gray;

set xtics (’0’ 0,”0.25° 250,70.5* 500,70.75* 750, *1* 999);

set ytics (0’ 0,°0.2° 1,704’ 2,°0.6’ 3,°0.8°4,°1’ 5,°1.2’ 6)
splot "datafile’ matrix with pm3d

Lines one and two send the output to a Postscript file instead of the screen. Given
line six, the color modifier is optional in this case.

Line three tells Gnuplot to prepare for a palette-mapped surface, and is necessary
before the splot command on line nine.

Line four deletes the legend, which in the pm3d case is known as the colorbox.

Line five sets the labels, and demonstrates that Gnuplot commands may put each
either on a separate line or separated with a semicolon. As you can see from this
script, ending a line with a semicolon is optional.

Line six sets the color scheme to something appropriate for a book printed in
black and white. There are many palettes to be had; the default, omitting the set
palette line entirely, works for most purposes.

Lines seven and eight fix the axis labels, because Gnuplot defaults to using the
index of the column or row as the label. The format requires a text label, followed
by the index at which the label will be placed; see below for further notes.

Changing line three to set pm3d map produces an overhead view of the same
surface, sometimes known as a contour plot, as in the second plot of Figure 5.2.
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The short version  The sample lines above were all relatively brief, but you can put
a huge amount of information onto one line. For example,

set style data bars

set style function lines

set linetype 3

set xrange [—10:10]

set yrange [0:2]

plot *data’ using 1:3 title *data’
replot sin(x) title ’sine’

# can be rewritten as:

plot *data’ using 1:3 [—10:10][0:2] with bars title *data’, sin(x) with lines linetype 3 title ’sine’
# or as

plot *data’ using 1:3 [—10:10][0:2] w bars title data’, sin(x) w 1 1t 3 title "sine’

All of these settings will be discussed below. The purpose of this example is to
show that style information can be put above the plot command, or it can be mixed
in on the line defining the plot. The replot command is also technically optional,
because you can add additional steps on one plot line using a comma. Finally,
once you have everything on one line, you can abbreviate almost anything, such
as replacing with lines with w 1. This is yet another minimalism-versus-clarity
tradeoff, and you are encouraged to stick with the clear version at first.

5.2 % SOME COMMON SETTINGS At this point, you can produce a basic plot

of data or a function (or both at once). But

you may have in mind a different look from Gnuplot’s default, which means you
will need to put a few set commands before the final plot.

This section catalogs the most common settings. For more information on the set-
tings here and many more, see the very comprehensive Gnuplot documentation,
which can be accessed from inside the Gnuplot command-line program via help,
optionally followed by any of the headers below (e.g., help set style, help
set pointtype).

Finally, if you are interactively experimenting with settings—which you are en-
couraged to do while reading this section—bear in mind that you may have to give
areplot command (one word with no options) before the settings take effect.
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style The basic style of the plot may be a simple line or points, a bar plot, box-

es with error bars, or many other possibilities. Gnuplot keeps track of two

types of style: that for function plotting (set style function)and for data plot-

ting (set style data). Forexample, to plot something that looks like a bar chart,

try set style data boxes, followed on the next line with plot yourdata.

As above, this is equivalent to the slightly shorter form plot yourdatae with
boxes, but it is often useful to separate the style-setting from the plot content.

Other favorite data styles include 1ines, dots, impulses (lines from the z-axis to
the data level), steps (a continuous line that takes no diagonals), 1inespoints (a
line with the actual data point marked), and errorbars (to be discussed below).

If you are plotting a function, like plot sin(x), then use set style function
lines (or dots or impulses, et cetera). Because there are separate styles for
functions and data, you can easily plot data overlaid by a function in a different
style.

pointtype, set linetype You can set the width and colors of your lines,
and whether your points will display as balls, tri-
angles, boxes, stars, et cetera.’

The pointtype and linetype commands, among a handful of other commands,
may differ from on-screen to Postscript to PNG to other formats, depending upon
what is easy in the different formats. You can see what each terminal can do via
the test command. E.g.:

set terminal postscript
set out 'testpage.ps’
test

Among other things, the test page displays a numbered catalog of points and lines
available for the given terminal.

title, set xlabel, set ylabel These simple commands label the X and
Y axes and the plot itself. If the plot is

going to be a figure in a paper with a paper-side caption, then the title may be

optional, but there is rarely an excuse for omitting axis labels. Sample usage:

3 As of this writing, Gnuplot’s default for the first two plotted lines is to use Linetype 1=red and linetype
2=green. Seven percent of males and 0.4% of females are red—green colorblind and therefore won’t be able to dis-
tinguish one line from the other. Try, e.g., plot sin(x); replot cos(x) linetype 3,to bypass linetype
2=green, thus producing a red/blue plot.
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set xlabel 'Time, days’
set ylabel ’Observed density, picograms/liter’
set title *Density over time’

set key Gnuplot puts a legend on your plot by default. Most of the time, it is rea-
sonably intelligent about it, but sometimes the legend gets in the way. Your
first option in this case is to just turn off the key entirely, via unset key.

The more moderate option is to move the key, using some combination of left,
right, or outside to set its horizontal position and top, bottom, or below to
set its vertical; ask help set key for details on the precise meaning of these
positions (or just experiment).

 The key also sometimes benefits from a border, via set key box.

* For surface plots with pm3d, the key is a thermometer displaying the range of colors
and their values. To turn this off, use unset colorbox. See help set colorbox
on moving the box or changing its orientation.

set xrange, set yrange Gnuplot generally does a good job of selecting a default
range for the plot, but you can manually override this
using set range [min:maz].

* Sometimes, you will want to leave one end of the range to be set by Gnuplot, but
fix the other end, in which case you can use a * to indicate the automatically-set
bound. For example, set yrange [*:10] fixes the top of the plot at ten, but lets
the lower end of the plot fall where it may.

* You may want the axes to go backward. Say that your data represents rankings, so
1 is best; then set yrange [*:1] reverse will put first place at the top of the
plot, and autoset the bottom of the plot to just past the largest ranking in the data
set.

set xtics AND set ytics Gnuplot has reasonably sensible defaults for how the

axes will be labeled, but you may also set the tick marks

directly. To do so, provide a full list in parens for the text and position of every last
label, such as on lines seven and eight of the code on page 161.

Producing this by hand is annoying, but as a first indication of producing Gnuplot
code from C, here is a simple routine to write a set ytics line:
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static void deal_with_y_tics(FILE =xf, double min, double max, double step){
int j=0;
fprintf(f, "set ytics (");
for (double i=n_min; i< n_max; i+=n_step){
fprintf(f, " %g’ %i", i, j++);
if (i+n_step <n_max—1)
fprintf(f, ", ");
}
fprintf(f, ")\n");

ASSORTED Here are a few more settings that you may find handy.

5.3

unset border #Delete the border of the plot.
unset grid #Make the plot even more minimalist.
set size square #Set all axes to have equal length on screen or paper.

set format y "%.3g" #You can use printf strings to format axis labels.
set format y "" #Or just turn off printing on the Y axis entirely.
set zero le—20 #Set limit at which a point is rounded to zero (default: 1e—8).

FROM ARRAYS TO PLOTS  The scripts above gave a file name from which

to read the data (plot ’data-debt?’). Alter-

natively, plot ’-’ tells Gnuplot to plot data to be placed immediately after the

plot command. With the ’-’ trick, the process of turning a matrix into a basic

plot is trivial. In fact, the principle is so simple that there are several ways of im-
plementing it.

Write to a file  Let data be an apop_data set whose first and fifth columns we

(o) NS T R S

would like to plot against each other. Then we need to create a file,
put a plot ’-’ command in the first line (perhaps preceded by a series of static
set commands), and then fill the remainder with the data to be plotted. Below
is the basic code to create a Gnuplot file. Since virtually anything you do with
Gnuplot will be a variant of this code, it will be dissected in detail.

FILE «f = fopen("plot_me", "w");

if (!f) exit(0);

fprintf(f, "set key off; set ylabel ’picograms/liter’\n set xrange [—10:10]\n");
fprintf(f, "plot *—’ using 1:5 title ’columns one and five’\n");

fclose(f);

apop_matrix_print(data—>matrix, "plot_me");
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* The first argument to fopen is the file to be written to, and the second option
should be either "a" for append or "w" for write anew; in this case, we want to
start with a clean file so we use "w".

* The fopen function can easily fail, for reasons including a mistyped directory
name, no permissions, or a full disk. Thus, you are encouraged to check that fopen
worked after every use. If the file handle is NULL, then something went wrong and
you will need to investigate.

* As you can see from lines three and four, the syntax for fprintf is similar to
that of the rest of the printf family: the first argument indicates to what you
are writing, and the rest is a standard printf line, which may include the usual
insertions via %g, %1, and so on.

* You can separate Gnuplot commands with a semicolon or newline, and can put
them in one fprintf statement or many, as is convenient. However, you will need
to end each line of data (and the plot line itself) with a newline.

* Since Gnuplot lets us select columns via the using 1:5 clause, there is no need
to pare down the data set in memory. Notice again that the first column in Gnuplot
is 1, not O.

* The title clause shows that Gnuplot accepts both “double quotes” and ‘single
quotes’ around text such as file names or labels. Single quotes are nothing special
to C, so this makes it much easier to enter such text.

¢ Line five closes the file, so there is no confusion when line six writes the data to the
file. It prints the matrix instead of the full apop_data structure so that no names
or labels are written. Since apop_matrix_print defaults to appending, the matrix
appears after the plot header that lines two and three wrote to the file. You would
need to set apop_opts.output_append=0 to overwrite.

* At the end of this, plot_me will be executable by Gnuplot, using the forms like
gnuplot -persist < plot_me, as above.

Instant gratification  The above method involved writing your commands and data

to a file and then running Gnuplot, but you may want to pro-

duce plots as your program runs. This is often useful for simulations, to give you a

hint that all is OK while the program runs, and to impress your friends and funders.

This is easy to do using a pipe, so named because of UNIX’s running data-as-water
metaphor; see Appendix B for a full exposition.

The command popen does two things: it runs the specified program, and it pro-
duces a data pipe that sends a stream of data produced by your program to the
now-running child program. Any commands you write to the pipe are read by the
child as if someone had typed those commands into the program directly.

Listing 5.3 presents a sample function to open and write to a pipe.
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#include <apop.h>
void plot_matrix_now(gsl_matrix =data){
static FILE xgp = NULL,;
if (!gp)
gp = popen("gnuplot —persist”, "w");
if (!gp){
printf("Couldn’t open Gnuplot.\n");
return;

}
fprintf(gp,"reset; plot ’—’ \n");
apop_opts.output_type =’p’;
apop_opts.output_pipe = gp;
apop_matrix_print(data, NULL);
fflush(gp);

}

int main(){
apop_db_open("data—climate.db");
plot_matrix_now(apop_query_to_matrix("select (year:12+month)/12., temp from temp"));

}

Listing 5.3 A function to open a pipe to Gnuplot and plot a vector. Online source: pipeplot.c.

The popen function takes in the location of the Gnuplot executable, and a w to
indicate that you will be writing to Gnuplot rather than reading from it. Most sys-
tems will accept the simple program name, gnuplot, and will search the program
path for its location (see Appendix A on paths). If gnuplot is not on the path,
then you will need to give an explicit location like /usr/local/bin/gnuplot. In
this case, you can find where Gnuplot lives on your machine using the command
which gnuplot. The popen function then returns a FILE*, here assigned to gp.

Since gp was declared to be a static variable, and popen is called only when
gp==NULL, it will persist through multiple calls of this function, and you can re-
peatedly call the function to produce new plots in the same window.

If gp is NULL after the call to popen, then something went wrong. This is worth
checking for every time a pipe is created.

But if the pipe was created properly, then the function continues with the now-
familiar process of writing plot ’-’ and a matrix to a file. The reset command
to Gnuplot (line 11) ensures that next time you call the function, the new plot will
not have any strange interactions with the last plot.

Lines 12 and 13 set the output type to ’p’ and the output pipe to gp; apop_-
matrix_print uses these global variables to know that it should write to that pipe
instead of a file or stdout.

Notice the resemblance between the form here and the form used to write to a file
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above. A FILE pointer can point to either a program expecting input or a file, and
the program writes to either in exactly the same manner. They are even both closed
using fclose. The only difference is that a file opens via fopen and a program
opens with popen. Thus, although the option is named apop_opts.output_-
pipe, it could just as easily point to a file; e.g., FILE *f=fopen(plotme, "w");
apop_opts.output_pipe = f;.

One final detail: piped output is often kept in a buffer, a space in memory that the
system promises to eventually write to the file or the other end of the pipe. This
improves performance, but you want your plot now, not when the system deems
the buffer worth writing. The function on line 15, ££1ush, tells the system to send
all elements of the gp buffer down the pipeline. The function also works when you
are expecting standard output to the screen, by the way, via fflush(stdout).*

The main drawback to producing real-time plots is that they can take over your
computer, as another plot pops up and grabs focus every half second, and can
significantly slow down the program. Thus, you may want to settle for occasional
redisplays, such as every fifty periods of your simulation, via a form like

for (int period =0; period< 1000; period++){
gsl_vector xoutput = run_simulation();
if (!(period % 50))
plot_vector_now (output);

Now would be a good time to plot some data series.

* Query a two-column table from data-tattoo.db giving the birth
year in the first column and the mean number of tattoos for respon-
dents in that birth year in the second.

* Dump the data to a Gnuplottable file using the above fprintf tech-
niques.

Q5 ) * Plot the file, then add set commands that you fprintf to file to

produce a nicer-looking plot. E.g., try boxes and impulses.

* Modify your program to display the plot immediately using pipes.
How could you have written the program initially to minimize the
effort required to switch between writing to a file and a pipe?

* How does the graph look when you restrict your query to include only
those with a nonzero number of tattoos?

4 Alternatively, £f1ush(NULL) will flush all buffers at once. For programs like the ones in this book, where
there are only a handful of streams open, it doesn’t hurt to just use ££1lush (NULL) in all cases.



gsl_stats March 24, 2009

170 CHAPTER 5

xSelf-executing files  This chapter is about the many possible paths from a data

set to a script that can be executed by an external program;
here’s one more.

Those experienced with POSIX systems know that a script can be made executable
by itself. The first line of the script must begin with the special marker #! fol-
lowed by the interpreter that will read the file, and the script must be given execute
permissions. Listing 5.4 shows a program that produces a self-executing Gnuplot
script to plot sin(x). You could even use system("./plotme") to have the script
execute at the end of this program.

#include <apop.h>
#include <sys/stat.h> //chmod

int main(){
char filename[] = "plot_me";
FILE «f = fopen(filename, "w");
fprintf(f, "#!/usr/bin/gnuplot —persist\n\
plot sin(x)");
fclose(f);
chmod(filename, 0755);

}

Listing 5.4 Write to a file that becomes a self-executing Gnuplot script. Run the script using
./plot_me from the command line. Online source: selfexecute.c.

% replot REVISITED replot and the plot ’-’ mechanism are incompatible, be-

cause Gnuplot needs to re-read the data upon replotting, but
can not back up in the stream to reread it. Instead, when replotting data sets, write
the data to a separate file and then refer to that file in the file to be read by Gnuplot.
To clarify, here is a C snippet that writes to a file and then asks Gnuplot to read the
file:

apop_data_print(data, "datafile");

FILE «f = fopen("gnuplot”, "w");

fprintf(f, "plot ’datafile’ using 1 title *data column 1’;\n \
replot "datafile’ using 5 title *data column 5’;\n");

fclose(f);

Also, when outputting to a paper device, replotting tends to make a mess. Set the
output terminal just before the final replot:

plot ’datafile’ using 1
replot *datafile’ using 2
replot *datafile’ using 3
set term postscript color
set out “four_lines.eps’
replot *datafile’ using 4
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» A Gnuplot command file basically consists of a group of set com-
mands to specify how the plot will look, and then a single plot (2-D
version) or splot (3-D version) command.

z » You can run external text-driven programs from within C using fopen
and popen.

» Using the plot ’-’ form, you can put the data to be plotted in the
command file immediately after the command. You can use this and
apop_data_print to produce plot files of your data.

5.4 A SAMPLING OF SPECIAL PLOTS For a system that basically only has

a set and a plot command, Gnuplot

is surprisingly versatile. Here are some specialized visualizations that go well be-
yond the basic 2-D plot.

LATTICES Perhaps plotting two pairs of columns at a time is not sufficient—you
want bulk, displaying every variable plotted against every other. For this,
use the apop_plot_lattice function.

#include "eigenbox.h"

int main(){
apop_plot_lattice(query_data(), "out");
}

Listing 5.5 The code to produce Figure 5.6. Link with the code in Listing 8.2, p 267. Online source:
lattice.c.

Listing 5.5 produces a file that (via gnuplot -persist <out) produces the plot
in Figure 5.6. Yes, it is one line of code, but you will need to link it with the data-
querying code in Listing 8.2, p 267. Each variable is plotted against every other;
e.g., the upper-middle plot shows males per 100 females versus state population,
and the middle-left plot shows a mirror image (along the diagonal line) of the same
plot.

What is a lattice plot good for? Some call it getting a lay of the land, while others
call it data snooping. Given ten perfectly random variables, there is a good chance
that at least one pair of lattice plots will look to you as if it demonstrates a nice
correlation. A formal regression on the chosen pair of variables will likely verify
your initial visual impression. For more on this conflict, see page 316.
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HISTOGRAMS

Figure 5.6 The Census data, as queried on page 267.

The typical error bar has three parts: a center, a top limit, and a bot-

tom limit. Gnuplot supports this type of data directly, via set style
data errorbars. You can provide the necessary information in a variety of for-
mats; the most common are (X, y center, y top, y bottom) and (X, y center, y range),
where the range is typically a standard deviation. Listing 5.7, which produces Fig-
ure 5.8, takes the second approach, querying out a month, the mean temperature
for the month, and the standard deviation of temperature for the month. Plotting
the data shows both the typical annual cycle of temperatures and the regular fluc-
tuation of variances of temperature.

A histogram is a set of X- and Y-values like any other, so plotting it

requires no special tools. However, Gnuplot will not take a list of data
and form a histogram for you—you have to do this on the C-side and then send the
final histogram to Gnuplot. Fortunately, apop_plot_histogram does the binning
for you. Have a look at Listing 11.2, page 359, for an example of turning a list of
data items into a histogram (shown in Figure 11.3).
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#include <apop.h>

int main(){
apop_db_open("data—climate.db");
apop_data xd = apop_query_to_data("select \

(yearmonth/100. — round(yearmonth/100.))*100 as month, \
avg(tmp), stddev(tmp) \
from precip group by month");

printf("set xrange[0:13]; plot *—’ with errorbars\n");

apop_matrix_show(d—>matrix);

}

Listing 5.7 Query out the month, average, and variance, and plot the data using errorbars. Prints

to stdout, so pipe the output through Gnuplot: ./errorbars | gnuplot -persist.
Online source: errorbars.c.
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Figure 5.8 Monthly temperature, +o.

The leading digit of a number is simply its most significant digit: the lead-
ing digit of 3247.8 is 3, and the leading digit of 0.098 is 9. Benford’s law
(Benford, 1938) states that the digitd € {0,1,...,9} will be a leading digit

with frequency
FixIn((d+1)/d). (54.1)

Check this against a data set of your choosing, such as the population col-
umn in the World Bank data, or the Total_area column from the US Cen-
sus data. The formal test is the exercise on page 322; since this is the chapter
on plotting, just produce a histogram of the chosen data set and verify that it
slopes sharply downward. (Hint: if d = 3.2e7, then 10(12t)10810(d) — 1¢7 )
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Figure 5.9 Each point represents a person.

LOG PLOTS You can plot your data on a log scale by either transforming it before it
gets to Gnuplot or by transforming the plot.

Log plots work best on a log-base-10 scale, rather than the typical natural loga-
rithm, because readers can immediately convert a 2 on the scale to 1e2, a —4 to
le—4, et cetera. From C, you can use the 1og10(x) function to calculate logjgx,
and if your data is in a gsl_vector, you can use apop_vector_logl0 to trans-
form the entire vector at once.

In Gnuplot, simply set logscale y to use a log-scaled Y axis, set logscale
x to use a log-scaled X axis, or set logscale xy for both.

@5.4

Redo the data-debt plot from the beginning of this chapter using a log
scale.

PRUNING AND JITTERING Plotting the entire data set may be detrimental for a few
reasons. One is the range problem: there is always that
one data point at Y = 1e20 throws off the whole darn plot. If you are using an
interactive on-screen plot, you can select a smaller region, but it would be better to

just not plot that point to begin with.

The second reason for pruning is that the data set may be too large for a single
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page. The black blob you get from plotting ten million data points on a single
piece of paper is not very informative. In this case, you want to use only a random
subset of the data.’

Both of these are problems of selecting data, and so they are easy to handle via
SQL. Asimple select * from plotme where value < 1e7 will eliminate val-
ues greater than a million, and page 84 showed how to select a random subset of
the data.

In Gnuplot, you can add the every keyword to a plot, such as plot ’data’
every 5 to plot every fifth data point. This is quick and easy, but take care that
there are no every-five patterns in the data.

Now consider graphing the number of tattoos a person has against her year of
birth. Because both of these are discrete values, we can expect that many people
will share the same year of birth and the same tattoo count, meaning that the plot of
those people would be exactly one point. A point at (1965, 1 tattoo) could represent
one person or fifty.

#include <apop.h>
gsl_rng xr;

void jitter(double :xin){
#in += (gsl_rng_uniform(r) — 0.5)/10;
}

int main(){
apop_db_open("data—tattoo.db");
gsl_matrix =m = apop_query_to_matrix("select \
tattoos.’ct tattoos ever had’ ct, \
tattoos.’year of birth’+1900 yr \
from tattoos \
where yr < 1997 and ct+0.0 < 10");
r = apop_rng_alloc(0);
apop_matrix_apply_all(m, jitter);
printf(set key off; set xlabel ’tattoos’; \n\
set ylabel ’birth year’; \n\
plot ’—’ pointtype 6\n");
apop_matrix_show(m);

}

Listing 5.10 By adding a bit of noise to each data point, the plot reveals more data. Online source:
jitter.c.

3 Another strategy for getting less ink on the page is to change the point type from the default cross to a dot.
For the typical terminal, do this with plot ... pointtype O.
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One solution is to add a small amount of noise to every observation, so that two
points will fall exactly on top of each other with probability near zero. Figure 5.9
shows such a plot. Without jittering, there would be exactly one point on the one-
tattoo column for every year from about 1955 to 1985; with jittering, it is evident
that there are generally more people with one tattoo born from 1965-1975 than in
earlier or later years, and that more than half of the sample with two tattoos was
born after 1975.

Further, the process of jittering is rather simple. Listing 5.10 shows the code used
to produce the plot. Lines 10—14 are a simple query; lines 17-20 produce a Gnuplot
header and file that get printed to stdout (so run the program as ./jitter |
gnuplot). In between these blocks, line 16 applies the jitter function to every
element of the matrix. That function is on lines 4-6, and simply adds a random
number € [—0.05,0.05] to its input. Comment out line 16 to see the plot without
jitter.

Q Modify the code in Listing 5.10 to do the jittering of the data points in the
5.5 SQL query instead of in the gs1_matrix.

» Apophenia will construct a grid of plots, plotting every variable
against every other, via apop_plot_lattice.

» With Gnuplot’s set style errorbars command, you can plot a
range or a one-o spread for each data point.

» You need to aggregate data into histograms outside of Gnuplot, but
z once that is done, plotting them is as easy as with any other data set.

» If the data set has an exceptional range, you can take the log of the
data in C via 1og10, plot the log in Gnuplot via set logscale 7y,
or trim the data in SQL via, e.g., select cols from table where
var<le2.

» If data falls on a grid (e.g., integer-valued rows and columns), then
you can add jitter to the plot to reveal the density at each point.
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5.5 ANIMATION Perhaps three dimensions is not quite enough, and you need

one more. Gnuplot easily supports animation: just stack ma-

trices one after the next and call plot in between. However, many media (such

as paper) do not yet support animation, meaning that your output will generally

be dependent on your display method. The GIF format provides animation and is
supported by all major web browsers, so you can also put your movies online.

There are two details that will help you with plotting multiple data sets. First, Gnu-
plot reads an e alone on a line to indicate the end of a data set. Second, Gnuplot
allows you to define constants via a simple equals sign; e.g., the command p =
0.6 creates the variable p and sets it to 0.6. Third, Gnuplot has a pause p com-
mand that will wait p seconds before drawing the next plot.

Tying it all together, we want a Gnuplottable file that looks something like this:

set pm3d;
p=1L

splot ’—" with pm3d
{data[0O] here}
e

pause p;
splot ’—’ with pm3d
{data[1] here}
e

pause p;
splot *—’ with pm3d
{data[2] here }
e

You can run the resulting output file through the Gnuplot command line as usual.
If a one-second pause is too long or too short, you only need to change the single
value of p at the head of the file to change the delay throughout.

You can write the above plots to a paper-oriented output format, in which case each
plot will be on a separate page. You could then page through them with a screen
viewer, or perhaps print them into a flipbook. When writing a file, set p=0 in the
above, since there is no use delaying between outputs.

In addition to the example below, Listings 7.12 (page 253) and 9.1 (page 298) also
demonstrate the production of animations.

SFor GIFs, you will need to request animation in the set term line, e.g., set term gif animate delay
100. The number at the end is the pause between frames in hundredths of a second.
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Figure 5.11 The Game of Life: at left is the original colony; at right is the colony after 150 periods.
The vaguely V-shaped figures (such as the groups farthest left, right, and top) are known
as gliders, because they travel one step forward every four periods.

An example: the game of life  There is a tradition of agent-based modeling built
around plotting agents on a grid, pioneered by Ep-
stein & Axtell (1996). A simple predecessor is Conway’s Game of Life, a cellular
automaton discussed at length in Gardner (1983). The game is played on a grid,
where each point on the grid can host a single blob. These blobs can not move, and
are somewhat delicate: if the blob has only zero or one neighbors, it dies of loneli-
ness, and if it has four or more neighbors, it dies of overcrowding. If an empty cell

is surrounded by exactly three blobs, then a new blob is born on that cell.

These simple rules produce complex and interesting patterns. At left in Figure 5.11
is the so-called r pentomino, a simple configuration of five blobs. At right is the
outcome after 150 periods of life. Listing 5.12 presents the code to run the game.
Because the program prints Gnuplot commands to stdout, run it using . /life |
gnuplot.

* The game uses two grids: the completed grid from the last period, named active
in the code, and the incomplete grid that will soon represent the state of life in the
next period, named inactive.

* Both grids are initialized to zero (lines 27-28), and then lines 29-31 define the r
pentomino.

* Line 32 is the Gnuplot header, and line 34 tells Gnuplot that data points are coming.

» The main work each period is preparing the inactive grid, which is what the calc_-
grid function does. It sets everything to zero, and then the two loops (i-indexed

for rows and j-indexed for columns) checks every point in the grid except the
borders.

* The area_pop function calculates the population in a 3x3 space; line 16 needs
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1 | #include <apop.h>
2 | int area_pop(gsl_matrix =a, int row, int col){
3 int i, j, out = 0;
4 for (i=row—1; i<= row+1; i++)
5 for (j=col—1; j<= col+1; j++)
6 out += gsl_matrix_get(a, i, j);
7 return out;
81}
9
10 | void calc_grid(gsl_matrix: active, gsl_matrix: inactive, int size){
11 inti, j, s, live;
12 gsl_matrix_set_all(inactive, 0);
13 for(i=1; i< size—1; i++)
14 for(j=1; j< size—1; j++){
15 live = gsl_matrix_get(active, i, j);
16 s = area_pop(active, i, j) — live;
17 if ((live && (s ==2 Il s == 3))
18 Il (Mlive && s == 3)){
19 gsl_matrix_set(inactive, i, j, 1);
20 printf("%i %i\n", i, j);
21 }
22 }
23| }
24
25 | int main(){
26 int i, gridsize=100, periods = 550;
27 gsl_matrix =t, sactive = gsl_matrix_calloc(gridsize,gridsize);
28 gsl_matrix =inactive = gsl_matrix_calloc(gridsize,gridsize);
29 gsl_matrix_set(active, 50, 50, 1); gsl_matrix_set(active, 49, 51, 1);
30 gsl_matrix_set(active, 49, 50, 1); gsl_matrix_set(active, 51, 50, 1);
31 gsl_matrix_set(active, 50, 49, 1);
32 printf("set xrange [1:%i]\n set yrange [1:%i]\n", gridsize, gridsize);
33 for (i=0; i < periods; i++){
34 printf("plot *—’ with points pointtype 6\n");
35 calc_grid(active, inactive, gridsize);
36 t = inactive;
37 inactive = active;
38 active = t;
39 printf("e\n pause .02\n");
40 }
41 | }

Listing 5.12 Conway’s game of life. Online source: life.c.

to subtract the population (if any) at the central point to get the population in the
point’s neighborhood.

* Notice that the loops in both area_pop and calc_grid never consider the edges
of the grids. That means that area_pop does not need to concern itself with edge
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conditions like if (i!'=0)....

The rules of the Game of Life are summarized in the if statement in lines 17-18.
There will be a blob at this point if either there is currently a blob and it has two
or three neighbors, or there is no living blob there but there are three neighbors.

If the if statement finds that there will be a blob in this space next period, it prints
a point to Gnuplot, and marks it in the currently inactive grid.

Lines 36-38 is the classic swap of the active and inactive grids, using a temp
location to help make the exchange. Since we are only shunting the addresses of
data, the operation takes zero time.

Other rules for life or death also produce interesting results. For example,
Q rewrite the rules so that a living blob stays alive only if there are 2, 3, 4, or

5.6 5 neighbors, and an empty space has a birth only if there is one neighbor.
Or try staying-alive rules of 2 and 6 with birth rules of 1 and 3.

5.6 ON PRODUCING GOOD PLOTS Cleveland & McGill (1985) offer some

suggestions for producing plots for the
purpose of perceiving the patterns among the static. Their experiments were aimed
at how well people could compare data presented in various formats, and arrived
at an ordering of graphical elements from those that were most likely to allow
accurate perception to layouts that inhibited accurate perception:

i) Position along a common scale (e.g., the height of the means in the temper-
ature plot on page 173)
ii) Position on identical but nonaligned scales (such as comparing points on
two separate graphs)
iii) Length (e.g., the height of the error bars in the temperature plot on page 173)
iv) Angle
v) Slope (when not too close to vertical or horizontal)
vi) Area
vii) Volume, Density, Color saturation (e.g., a continuous scale from light blue
to dark blue)
viii) Color hue (e.g., a continuous scale from red to blue)

Data should be presented using techniques as high up on the scale as possible.
Pie charts (representing data via angle and area) are a bad idea because there are
many better ways to present the same data. Gnuplot does provide a means of set-
ting data-dependent color, but given that color is at the bottom of Cleveland and
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McGill’s list, it should be used as a last resort. They did not run experiments with
animation, but our eyes have cells exclusively dedicated to sensing motion, so it

seems sensible that if movement were included on the list, it would rank highly.

As for angles and slopes, consider
these plots of the US national debt
since 1995. The top plot has a y
axis starting at $0, while the sec-
ond has a y axis starting at $4.5
trillion. Is the rate of change from
1995-1996 larger or smaller than
the rate of change from 2005-2006?
Was growth constant or decelerat-
ing from 1995-20007? It is diffi-
cult to answer these questions from
the top graph, because everything is
somewhat flat—the change in an-
gles is too small to be perceived,
and we are bad at discerning slopes.
Differences in slope on the second
scale are more visible. The lesson is
that plots show their patterns most
clearly when the axes are set such
that the slope is around 45°.

The bottom plot is the US national
deficit. This is the amount the gov-
ernment spends above its income,
and is thus the rate of change of the
debt. The rate of change in the first
two graphs (a slope in those graphs)
is the height of this plot for each
year, and position along a common
scale is number one on Cleveland
and McGill’s list. The answers to
the above questions are now obvi-

US national debt

9e+12

8e+12
Te+12
6e+12 —
Se+12
4e+12
3e+12
2e+12
le+12

0

National debt

1996_
]998_
2000_
2002_

5
N

9e+12 I
8.5e+12
8e+12
7.5e+12
Te+12
6.5e+12 —
6e+12 —
5.5e+12
Se+12

National debt

_ 2004 -

4.5e+12

N

2000 -
2002 -

2004_

6e+11 T T T
Se+11
de+11 |-
3e+1l
2e+ll
le+ll

0 |

Annual deficit

| |
NN N 8

[Online source: debt.gnuplot.]

S
N

S
N

ous: the rate of change for the debt slowed until 2000 and then quickly rose to

about double 1995 rates.

Darrell Huff, in the classic How to Lie With Statistics (Huff & Geis, 1954, Chapter
5), has a different goal and so makes different recommendations. He points out that
the top two graphs tell a different narrative. The second graph tells a story that the
national debt is rapidly increasing, because the height of the point at 2006 is about
eight times the height at 1995. The top graph shows that the debt rose, but not at a
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fast-multiplying rate. Huff concludes that the full story is best told when the zero
of the y axis always in the picture, even if this means blank space on the page—
advice that directly contradicts the advice above. So the choice for any given plot
depends on the context and intent, although some rules—Ilike avoiding pie charts
and continuous color scales—are valid for almost all situations.

5.7 % GRAPHS—NODES Incommon conversation, we typically mean the word

AND FLOWCHARTS graph to be a plot of data like every diagram to this

point in the chapter. The mathematician’s definition

of graph, however, is a set of nodes connected by edges, as in Figure 5.13. Gnuplot

can only plot; if you have network data that you would like to visualize, Graphviz

is the package to use. Like all of the tools in this book, Graphviz installs itself
gracefully via your package manager.

The package includes various executables, the most notable of which are dot and
neato. Both take the same input files, but dot produces a flowchart where there
is a definite beginning and end, while neato produces more amorphous plots that
aim only to group nodes via the links connecting them.

The programs are similar to Gnuplot in that they take in a plain text description of
the nodes and edges, and produce an output file in any of a plethora of graphics
formats. The syntax for the input files is entirely different from Gnuplot’s, but the
concept is familiar: there are elements to describe settings interspersed with data
elements.

For example, flip back to page 3 and have a look at Figure 1.3. Produce the first
graph in the figure using the following input to dot:

digraph {
rankdir = LR;
node [shape=box];
"Data" —> "Estimation" —> "Parameters";

The lines with = in them set parameters, stating that the graph should read left-
to-right instead of the top-to-bottom default, and that the nodes should be boxes
instead of the default ellipses. The line with the ->s defines how the nodes should
link, and already looks like a text version of Figure 1.3. The command line

[dot —Tpng <graphdata.dot > output.png
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Figure 5.13 The social network of a Junior High classroom.

produces a graph much like that in Figure 1.3, in the PNG format.”

At this point, you have all the tools you need to autogenerate a graph. For example,
say that you have an n x n grid where a one in position (4, j) indicates a link
between agents ¢ and j and a zero indicates no link. Then a simple for loop would
convert this data into a neato-plottable file, with a series of rows with a form like,
e.g.,node32 -> nodel2.

void produce_network_graph(apop_data *link_data, char *outfile){
FILE =g = fopen(outfile, "w");
fprintf(g, "digraph{\n");
for (int i=0; i< link_data—>matrix—>sizel; i++)
for (int j=i+1; j< link_data—>matrix—>size2; j++)
if (apop_data_get(link_data, i,j))
fprintf(g, "node%i —> node%i;\n", i.j);
fprintf(g, "}\n");
fclose(g);

In the code supplement, you will find a file named data-classroom, which lists
the survey results from a Junior High classroom in LA, in which students listed

"The second half of Figure 1.3 was produced using exactly the same graph, plus the psfrag package to replace
text like Data with the OLS-specific math shown in the figure.
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their five best friends. The ego column is the student writing down the name of his

or her

best friend, and the nominee column gives the number of the best friend.

Figure 5.13 graphs the classroom, using neato and the following options for the

graph:

digraph{
node [label="",shape=circle,height=0.12,width=0.12];
edge [arrowhead=open,arrowsize=.4];

}

A few patterns are immediately evident in the graph: at the right is a group of four
students who form a complete clique, but do not seem very interested in the rest

of the

class. The student above the clique was absent the day of the survey and

thus is nominated as a friend but has no nominations him or herself; similarly for
one student at the lower left. Most of the graph is made from two large clumps of
students who are closely linked, at the left and in the center, probably representing
the boys and the girls. There are two students who nominated themselves as best
friends (one at top right and one at the bottom), and those two students are not very
popular.

Qs

Write a program to replicate Figure 5.13.

* Read the data-classroon file into an apop_data set, using either
apop_text_to_db and a query, or apop_text_to_data.

* Open your output file, and copy in the header from above.

* Write a single for loop to write one line to the output file for each
line in the data set. Base your printing function on the one from page
183.

* Close the file.
Running the program will produce a neato-formatted file.

* From the command line, run neato -Tps <my_output >
out . eps. The output graph should look just like Figure 5.13.

* In the dot manual (man dot from the command line), you will see
that there are many variant programs to produce different types of
graph. What does the classroom look like via dot, circo, and twopi?

The exercise on page 414 will show you another way to produce the
Graphviz-readable output file.
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Internal use  If you have been sticking to the philosophy of coding via small, simple

functions that call each other, your code will look like a set of elements

linked via function calls—exactly the sort of network for which Graphviz was

written. If you feel that your code files are getting a bit too complex, you can use
Graphviz to get the big picture.

For example, say that your database is growing involved, with queries that merge
tables into new tables, other queries to split the tables back into still more tables, et
cetera. For each query that creates a table, it is easy to write down a line (or lines)
like base_tab -> child_tab. Then, dot can sort all those individual links into
a relatively coherent flow from raw data to final output.®

You could also graph the calling relationships among the functions in your C
code—but before you start manually scanning your code, you should know that
there is a program to do this for you. Ask your package manager for doxygen,
which generates documentation via specially-formatted comments in the source
file. If configured correctly, it will use Graphviz to include call graphs in the doc-
umentation.

The online code supplement includes a few more examples of Graphviz at work,
including the code used to create Figures 1.1, 6.5, and 6.7.

» The Graphviz package produces graphs from a list of nodes and
z edges. Such lists are easy to autogenerate from C.

» You can also use Graphviz to keep track of relationships among func-
tions in your code or tables in your database.

5.8 x PRINTING AND IXTEX  This book focuses on tools to write replicable,
portable analyses, where every step is described
in a handful of human-legible text files that are sent to programs that behave in the
same manner on almost any computer. The TEX document preparation system (and
the set of macros built on top of it, ISTEX) extend the pipeline to the final writeup.
For example, you can easily write a script to run an analysis and then regenerate

the final document using updated tables and plots.’

8SQL does not have the sort of metadata other systems have for describing a table’s contents in detail (e.g.,
the apop_data structure’s title element). But you can set up a metadata table, with a column for the table
name, its description, and the tables that generated that table. Such a table is reasonably easy to maintain, because
you need only add an insert into metadata ... query above any query that generates a table. Q: Write a
function to take in such a table and output a flowchart demonstrating the flow of data through the database tables.

9To answer some questions you are probably wondering: yes, this book is a IATEX document. Most of the plots
were produced via set term latex in Gnuplot, to minimize complications with sending Postscript to the press.
Save for the pointer-and-box diagrams in the C chapter, Student’s hand-drawn menagerie, and the snowflake at
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A complete tutorial on IATEX would be an entire book—which has already been
written dozens of times. But this chapter’s discussion of the pipeline from raw
data to output graphs is incomplete without mention of a few unpleasant details
regarding plots in IKTEX.

You have two options when putting a plot in a TgXed paper: native IATgX and
Postscript.

Native format  Just as you can set the output device to a screen or a Postscript

printer, you can also send it to a file written using IAIEX’s graphics

sub-language. One the plus side, the fonts will be identical to those in your docu-

ment, and the resolution is that of TgX itself (100 times finer than the wavelength

of visible light). On the minus side, some features, such as color, are currently not
available.

Producing a plot in IIEX format requires setting the same term/out settings as
with any other type of output: set term latex; set out ’plot.tex’.!”

Just as you can dump one C file into another via #include, you can include the
Gnuplot output via the \ input command:

\documentclass{article}
\usepackage {latexsym }
\begin{document}

\begin{figure}

\input outfile.tex

\caption{ This figure was autogenerated by a C program.}
\end{figure}

\end{document}

Another common complaint: the Y -axis label isn’t rotated properly. The solution
provides a good example of how you can insert arbitrary IATgX code into your Gnu-
plot code. First, in the Gnuplot file, you can set the label to any set of instructions
that ISTEX can understand. Let A be an arbitrary label; then the following command
will write the label and tell ISTEX to rotate it appropriately:

the head of every chapter, I made a point of producing the entire book using only the tools it discusses.

The snowflake was generated by covering a triangle with a uniform-by-area distribution of dots, each with a
randomly selected color and size, and then rotating the triangle to form the figure. Therefore, any patterns you
see beyond the six-sided rotational symmetry are purely apophenia.

And in my experience helping others build data-to-publication pipelines, the detail discussed in this section
about rotating the Y -axis label really is a common complaint.

10By the way, for a single plot, the set out command is optional, since you could also use a pipe: gnuplot
< plotme > outfile.tex.
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[set ylabel "\rotatebox {90} { Your $\lambda$ here.}’

Two final notes to complete the example: \rotatebox is in the graphicx package,
so it needs to be called in the document preamble:

|:\usepackage {latexsym, graphicx }

Second, many dvi viewers do not support rotation, so if you are viewing via TgX’s
native dvi format, the rotation won’t appear. Use either pdflatex or dvips to
view the output as it will print.

The Postscript route  Which brings us to the second option for including a graphic:
Postscript.

Use the graphicx package to incorporate the plot. E.g.:

\documentclass{article}
\usepackage { graphicx }
\begin{document}

\begin{figure}

\rotatebox {90} {\scalebox {.35} {\includegraphics{outfile.eps} } } }
\caption{ This figure was autogenerated by a C program.}
\end{figure}

\end {document}

Notice that you will frequently need to rotate the plot 90° and scale the figure down
to a reasonable size.

The first option for generating PDFs is to use epstopdf. First, convert all of your
eps files to pdf files on the command line. In bash, try

for i in *.eps; do
epstopdf $i;
done

Then, in your I4TEX header, add

[\u sepackage[pdftex]{epsfig}
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The benefit to this method is that you can now run pdflatex my_document with-
out incident; the drawback is that you now have two versions of every figure clut-
tering up your directory, and must regenerate the PDF version of the graphic every
time you regenerate the Postscript version.

The alternative is to go through Postscript in generating the document:

latex a_report
dvips < a_report.dvi > a_report.ps
ps2pdf a_report.ps

Either method is a lot of typing, but there is a way to automate the process: the
make program, which is discussed in detail in Appendix A. Listing 5.14 is a sample
makefile for producing a PDF document via the Postscript route. As with your C
programs, once the makefile is in place, you can generate final PDF documents by
just typing make at the command line. The creative reader could readily combine
this makefile with the sample C makefile from page 387 to regenerate the final
report every time the analysis or data are updated. (Hint: add a gen_all target that
depends on the other targets. That target’s actions may be blank.)

DOCNAME = a_report
pdf: $(DOCNAME).pdf

$(DOCNAME).dvi: $(DOCNAME).tex
latex $(DOCNAME); latex $(DOCNAME)

$(DOCNAME).ps: $(DOCNAME).dvi
dvips —f < $(DOCNAME).dvi > $(DOCNAME).ps

$(DOCNAME).pdf: $(DOCNAME).ps
ps2pdf $(DOCNAME).ps $(DOCNAME).pdf

clean:

rm —f $(DOCNAME).blg $(DOCNAME).log $(DOCNAME).ps

Listing 5.14 A makefile for producing PDFs from IZTEX documents. Online source: Makefile. tex.

» Once a plot looks good on screen, you can send it to an output file
using the set termand set out commands.

» For printing, you will probably want to use set term postscript.
For online presentation, use set term png or set term gif. For
inserting into a I&IEX document, you can either use Postscript or set
term latex.
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% MORE CODING TOOLS

If you have a good handle on Chapter 2, then you already have what you need to
write some very advanced programs. But C is a world unto itself, with hundreds
of utilities to facilitate better coding and many features for the programmer who
wishes to delve further.

This chapter covers some additional programming topics, and some details of C
and its environment. As with earlier chapters, the syntax here is C-specific, but it
is the norm for programming languages to have the sort of features and structures
discussed here, so much of this chapter will be useful regardless of language.

The statistician reader can likely get by with just a skim over this chapter (with a
focus on Section 6.1), but readers working on simulations or agent-based models
will almost certainly need to use the structures and techniques described here.

The chapter roughly divides into three parts. After Section 6.1 covers functions
that operate on other functions, Section 6.2 will use such functions to build struc-
tures that can hold millions of items, as one would find in an agent-based model.
Section 6.3 shows the many manners in which your programs can take in parame-
ters from the outside world, including parameter files, enivornment variables, and
the command line. Sections 6.4 and 6.5 cover additional resources that make life
in front of a computer easier, including both syntactic tricks in C and additional
programs useful to programmers.
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6.1 FUNCTION POINTERS A data point d is stored somewhere in memory, so
we can refer to its address, &d. Similarly, a func-
tion £ is stored somewhere in memory, so we can refer to its address as well.

What is a pointer to a function good for? It lets us write Functions that will ac-
cept any function pointer and then use the pointed-to function. [Functions calling
functions is already confusing enough, so I will capitalize Function to indicate a
parent function that takes a lower-case function as an input.] For example, a Func-
tion could search for the largest value of an input function over a given range, or a
bootstrap Function could take in a statistic-calculating function and a data set and
then return the variance of the statistic.

TYPES Before we can start writing Functions to act on functions, we need to take the
type of input function into consideration. If a function expects ints, then the
compiler needs to know this, so it can block attempts to send the function a string

or array.

The syntax for declaring a function pointer is based on the syntax for declaring a
function. Say that we want to write a Function that will take in an array of doubles
plus a function, and will apply the function to every element of the array, returning
an array of ints. Then the input function has to have a form like

[int double_to_int (double x); (A)

Recall that a pointer declaration is just like a declaration for the pointed-to type
but with another star, like int *i; the same goes for declaring function pointers,
but there are also extra parens. Here is a type for a function pointer that takes in a
double and returns a pointer to int; you can see it is identical to line A, but for
the addition of a star and parens:

[int (+double_to_int) (double x) (B)

By the way, if the function returned an int* instead of a plain int, the declaration
would be:

[int #(:xdouble_to_int) (double x)

The type declarations do nothing by themselves, just as the word int does nothing
by itself. But now that you know how to define a function type, you can put the
declaration of the function into your header line. A Function that applies a function
to an array of doubles would have a header like this:

[int* apply (double :v, int (xinstance_of_function) (double x)); ©)
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Putting typedef to work  Are you confused yet? Each component basically makes
sense, but together it is cluttered and confusing. There is
a way out: typedef. By putting that word before line B—

[typedef int (:xdouble_to_int) (double x);

—we have created an new type named double_to_int that we can use like any
other type. Now, line C simplifies to

int: apply (double v, double_to_int instance_of_function);
1 | #include <apop.h>
2
3 | typedef double (xdfn) (double);
4
5 | double sample_function (double in){
6 return log(in)+ sin(in);
7101}
8
9 | void plot_a_fn(double min, double max, dfn plotme){
10 double val;
11 FILE =f = popen("gnuplot —persist", "w");
12 if (!f)
13 printf("Couldn’t find Gnuplot.\n");
14 fprintf(f, "set key off\n plot *—’ with lines\n");
15 for (double i=min; i<max; i+= (max—min)/100.0){
16 val = plotme(i);
17 fprintf(f, "%g\t%g\n", i, val);
18 }
19 fprintf(f, "e\n");
20| }
21
22 | int main(){
23 plot_a_fn(0, 15, sample_function);
24 |}

Listing 6.1 A demonstration of a Function that takes in any function R — R and plots it. Online
source: plotafunction.c.

Listing 6.1 shows a program to plot any function of the form R — R, using the
Gnuplot program described in Chapter 5. With a typedef in place, the syntax
is easy. You don’t need extra stars or ampersands in either the declaration of the
Function-of-a-function or in the call to that Function, and you can call the pointed-
to function like any other.
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Line 3: To make life easier, the dfn type is declared at the top of the file.

Line 5: The header for the sample_function matches the format of the dfn func-
tion type (i.e., double in, double out).

Line 9: The plot_a_fn Function specifies that it takes in a function of type dfn.

Line 16: Using the passed-in function is as simple as using any other function: this
line gives no indication that plotme is in any way special.

Line 23: Finally, in main, you can see how plot_a_fn is called. The sample_-
function is passed in with just its name.

For another example, have a look at jackiteration.c on page 132.

Turn plotafunction.c into a library function callable by other programs.
* Comment out the main function.

* Write a header plotafunction.h with the necesary type and func-
tion definitions.

Q6'1 * Write a test program that #includes plotafunction.h and plots
the calc_taxes function from taxes.c (p 118).

* Modify the makefile to produce the final program by creating and
linking both your_code. o and plotafunction.o.

Define a type dfn as in line three of Listing 6.1. Then write a Function
with header void apply(dfn fn, double *array, int array_len)
that takes as arguments a function, an array, and the length of the array, and

Q&z changes each element array[i] to fn(array[i]). [Apophenia provides

comparable functions; see page 117 for details.]
Test your Function by creating an array of the natural numbers 1,2,3,...20
and transforming it to a list of squares.

» You can pass functions as function arguments, just as you would pass
arrays or numbers.

» The syntax for declaring a function pointer is just like the syntax for
declaring a function, but the name is in parens and is preceded by a
star. >
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>

» Defining a new type to describe the function helps immensely. This
requires putting typedef in front of the function pointer declaration
z in the last summary point.

» Once you have a typedef in place, you can declare Functions that
take functions, use the passed-in functions, and call the parent Func-
tion as you would expect. Given the typedef, you need neither stars
nor ampersands for these operations.

6.2 DATA STRUCTURES  Say that you have a few million observations to store
on your computer. You want to find any given item
quickly, add or delete elements easily, and not worry too much about a compli-
cated organization system. There are several options for balancing these goals,
and choosing among them is not trivial. This section will consider three: the array,

the linked list, and the binary tree.

They will be implemented here via Glib, a library of general-use functions that ev-
ery C programmer seems to re-implement. It includes a few features for string han-
dling and other such conveniences, and modules to handle the data structures de-
scribed here.! The extended example below provides documentation-by-example
of initializing, adding to, removing from, and finding elements within the various
structures, but your package manager will be happy to install the complete docu-
mentation, as well as Glib itself.

AN EXAMPLE This game consists of a series of meetings between pairs of birds,
who compete over r utils of resource.” If two doves meet, they split
the resource evenly between them. If a dove and a hawk meet, the dove backs
down and the hawk gets the resource. If two hawks meet, then the hawks fight,
destroying c utils in resources before finally splitting what is left. Table 6.2 shows
a payoff table summarizing the outcomes. For each pairing, the row player gets the

first payoff, and the column player gets the second.

1Glib also provides a common data structure known as a hash table, which is another technique for easy data
retrieval. It converts a piece of data, such as a string, into a number that can then be used to jump to the string’s
data in a table very quickly. Binary trees tend to work better in the context of agent-based modeling, so I have
omitted hashes from this chapter. See Kernighan & Pike (1999), Chapter 3, for an extended example of hash
tables that produce nonsense text. It was intended as an amusement (compare with the Exquisite Corpse-type
game played by Pierce (1980, p 262)), but is now commonly used to produce spam email. Q: Try implementing
Kernighan and Pike’s nonsense generator using Glib’s hash tables, string hash functions, and list structures.

2The util is the unit of measurement for the quantity of utility an agent gets from an action.
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dove hawk
dove | (5, 5 0, 1)
hawk | (r,0) (=, 5°

Table 6.2 The payoff matrix for the hawk/dove game. If ¢ < r, then this is a prisoner’s dilemma.

With ¢ < r, the game is commonly known as a prisoner’s dilemma, due to a
rather contrived story about two separated prisoners who must choose between
providing evidence about the other prisoner and remaining silent. Its key feature
is that being a dove (cooperating) always makes the agent worse off than being a
hawk (not cooperating, which the literature calls defection). The only equilibrium
to the P.D. game is when nobody cooperates, destroying resources every period,
but the societal optimum is when everyone cooperates, producing 7 utils of utility
total every time.

On top of this we can add an evolutionary twist: say that a bird that is very success-
ful will spawn chicks. In any one interaction, a bird gets an equal or better payoff
as a hawk than as a dove, so it seems that over time, the hawks would approach
100% of the population. In the simulation below, a bird’s odds of reproducing are
proportional to the percentage of total flock wealth the bird holds, and its odds of
dying are inversely proportional to the same.

To simulate the game, we will need a flock of birds. Have a look at the header file
birds/birds.h in the online code supplement. It begins by describing the basic
structure that the rest of the functions depend upon, describing a single bird:

typedef struct {
char type;
int wealth;
int id;

} bird;

The header then lists two types of function. The first are functions for each relevant
action in the simulation: startup, births, deaths, and actual plays of the hawk/dove
game. The second group are functions for flock management, such as counting the
flock or iterating over every member of the flock.

The first set of functions are implemented in Listing 6.3. Each function, taken
individually, should make sense: play_hd_game takes in two birds and modifies
their payoff according to the game rules above; bird_plays takes in a single bird,
finds an opponent, and then has them play against each other; et cetera.
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#include "birds.h"
#include <time.h>

gsl_rng xr1;

int periods = 400;

int initial_pop = 1000;
int id_count = 0;

void play_hd_game(bird xrow, bird :col){
double resource = 2,
cost =2.01;

if (row —>type == "d’ && col—>type =="h")
col—>wealth += resource;

else if (row —>type == "h’ && col—>type =="d’)
row —>wealth += resource;

else if (row —>type == "d’ && col—>type =="d’){
col—>wealth += resource/2;
row —>wealth += resource/2;

} else { // hawk v hawk
col—>wealth += (resource —cost)/2;
row —>wealth += (resource —cost)/2;

1)

void bird_plays(void :in, void +dummy_param){
bird *other;
while(!(other = find_opponent(gsl_rng_uniform_int(r,id_count))) && (in != other))
//do nothing.
play_hd_game(in, other); }

bird snew_chick(bird =parent){
bird xout = malloc(sizeof(bird));
if (parent)
out—>type = parent—>type;
else{
if (gsl_rng_uniform(r) > 0.5)
out—>type =’d’;
else
out—>type ="h’;
}
out—>wealth = 5% gsl_rng_uniform(r);
out—>id = id_count;
id_count ++;
return out; }

void birth_or_death(void xin, void xt){
bird «b = in; /cast void to bird;
int xtotal_wealth =t;
if (b—>wealth=20./ xtotal_wealth >= gsl_rng_uniform(r))
add_to_flock(new_chick(b));
if (b—>wealth=800./ «total_wealth <= gsl_rng_uniform(r))
free_bird(b); }

void startup(int initial_flock_size){
flock_init();
r = apop_rng_alloc(time(NULL));
printf("Period\tHawks\tDoves\n");
for(int i=0; i< initial_flock_size; i++)
add_to_flock(new_chick(NULL)); }
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int main(){
startup(initial_pop);
for (int i=0; i< periods; i++){
flock_plays();
count(i);

1

Listing 6.3 The birds. Online source: birds/birds.c

Now for the flock management routines, which will be implemented three times:
as an array, as a list, and as a binary tree.

ARRAYS Anarray is as simple as data representation can get: just write each element
right after the other. The matrices and vectors throughout this book keep
their data in arrays of this type.

The system can retrieve an item from an array faster than from any other data
structure, since the process consists of simply going to a fixed location and reading
the data there. On the other hand, adding and deleting elements from an array is
difficult: the simulation has to call realloc every time the list expands. If you are
lucky, realloc will not move the array from its current location, but will simply
find that there is more free space for the array to grow. If you are not lucky, then
the array will have to be moved in its entirety to a new, more spacious home.

An array can not have a hole in the middle, so elements can not be deleted by
freeing the memory. There are a few solutions, none of which are very pleasant.
The last element of the list could be moved in to the space, requiring a copy, a
shrinking of the array, and a loss of order in the elements. If order is important,
every element could be shifted down a notch, so if item 50 is deleted, item 51 is
put in slot 50, item 52 is put in slot 51, et cetera. Thus, every death could mean a
call to memmove to execute thousands or millions of copy operations.

Listing 6.4 marks dead birds by setting their id to -1. This means that as the
program runs, more and more memory is used by dead elements, and the rest of
the system must check for the marker at every use.

As for finding an element, add_to_flock takes pains to ensure that the id and
array index will always match one-to-one, so finding a bird given its id number
is trivial. As with the code above, the code consists of a large number of short
functions, meaning that it is reasonably easy to understand, read, and write each
function by itself.
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#include "birds.h"

bird *flock;
int size_of flock, hawks, doves;

void flock_plays(){
for (int i=0; i< size_of_flock; i++)
if (flock[i].id >= 0)
bird_plays(&(flock[i]), NULL); }

void add_to_flock(bird: b){
size_of_flock = b—>id;
flock = realloc(flock, sizeof(bird):(size_of_flock+1));
memcepy(&(flock[b—>id]), b, sizeof(bird));
free(b); }

void free_bird(bird: b){ b—>id = —1; }

bird = find_opponent(int n){
if (flock[n].id >= 0)
return &(flock[n]);
else return NULL,; }

int flock_size(){ return size_of_flock; }

int flock_wealth(){
int i, total =0;
for (i=0; i< size_of_flock; i++)
if (flock[i].id >= 0)
total += flock[i].wealth;
return total; }

double count(int period){
int i, tw = flock_wealth();
hawks = doves = 0;
for(i=0; i< size_of_flock; i++)
if (flock[i].id>=0)
birth_or_death(&(flock[i]), &tw);
for(i=0; i< size_of_flock; i++)
if (flock[i].id>=0){
if (flock[i].type =="h")
hawks ++;
else doves ++;

printf("%i\t%i\t%i\n", period, hawks, doves);
return (doves+0.0)/hawks;}

void flock_init(){
flock = NULL;
size_of_flock = 0; }

Listing 6.4 The birds, array version. The fatal flaw is that birds are copied in, but never eliminated.
Dead birds will eventually pile up. Online source: birds/arrayflock.c
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Because the play_hd_game function sets 7 == 2 and ¢ == 2.01, hawks
lose 0.005 utils when they fight, so it is marginally better to be a dove when
meeting a hawk, and the game is not quite a prisoner’s dilemma. After run-
ning the simulation a few times to get a feel for the equilibrium number
of birds, change c to 2.0 and see how the equilibrium proportion of doves
Q&s changes. [For your convenience, a sample makefile is included in the birds
directory of the code supplement.]

Finally, rename main to one_run and wrap it in a function that takes in a
value of c and returns the proportion of doves at the end of the simulation.
Send the function to the plot_a_function function from earlier in the
chapter to produce a plot.

Rewrite arrayflock.c to delete birds instead of just mark them as dead.
Use memmove to close holes in the array, then renumber birds so their id
Q& 4 matches the array index. Keep a counter of current allocated size (which
may be greater than the number of birds) so you can realloc the array
only when necessary.

LINKED LISTS A linked list is a set of structs connected by pointers. The first
struct includes a next pointer that points to the next element,
whose next pointer points to the next element, et cetera; see Figure 6.5.

Bird 1
Bird 2
next Bird 3
next Bird 4

next
NULL

Figure 6.5 The archetypal linked list. Online source: 1ist.dot.

The linked list is a favorite for agent-based simulation, because birth and death is
easy to handle. To add an element to a linked list, just create a new node and replace
the NULL pointer at the end of the list with a pointer to the new node. Deleting a
node is also simple: to delete bird 2, simply reroute the next pointer from bird
1 — 2 so that it points from bird 1 — 3, and then free the memory holding bird 2.

But the real failing of the linked list is the trouble of finding an arbitrary element.
In an array, finding the ten thousandth element is easy: £1ock [9999]. You can see
in the code of Listing 6.6 that glib provides a g_list_nth_data function to return
the nth element of the list, which makes it look simple, but the only way that that
function can find the ten thousandth member of the flock is to start at the head of
the list and take 9,999 ->next steps. In fact, if you compile and run this program,
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you will see that it runs much more slowly than the array and tree versions.

#include "birds.h"
#include <glib.h>

GList *flock;
int hawks, doves;

void flock_plays(){ g_list_foreach(flock, bird_plays, NULL); }
void add_to_flock(bird: b){ flock = g_list_prepend(flock, b); }

void free_bird(bird: b){
flock = g_list_remove(flock, b);
free(b); }

bird * find_opponent(int n){ return g_list_nth_data(flock, n); }

void wealth_foreach(void «in, void :total){
#((int=)total) += ((bird:*)in)—>wealth; }

int flock_wealth(){
int total = 0;
g_list_foreach(flock, wealth_foreach, &total);
return total; }

int flock_size(){ return g_list_length(flock); }

void bird_count(void xin, void #Vv){
bird b =in;
if (b—>type =="h’")
hawks ++;
else doves ++;

}

double count(int period){
int total_wealth =flock_wealth();
hawks = doves = 0;
g_list_foreach(flock, birth_or_death, &total_wealth);
g_list_foreach(flock, bird_count, NULL);
printf("%i\t%i\t%i\n", period, hawks, doves);
return (doves+0.0)/hawks;}

void flock_init(){ flock = NULL; }

Listing 6.6 The birds, linked list version. The fatal flaw is that finding a given bird requires traversing
the entire list every time. Online source: birds/listflock.c

* The g_list_foreach function implements exactly the sort of apply-function-to-
list setup implemented in Section 6.1. It takes in a list and a function, and internally
applies the function to each element.

* The folks who wrote the Glib library could not have known anything about the
bird structure, so how could they write a linked list that would hold it? The so-
lution is void pointers—that is, a pointer with no type associated, which could
therefore point to a location holding data of any type whatsoever. For example,
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bird_count takes in two void pointers, the first being the element held in the list,
and the second being any sort of user-specified data (which in this case is just
ignored).

 The first step in using a void pointer is casting it to the correct type. For example,
the first line in bird_count—bird *b = in;—points b to the same address as
in, but since b has a type associated, it can be used as normal.

* As for adding and removing, the Glib implementation of the list takes in a pointer
to a GList and a pointer to the data to be added, and returns a new pointer to
a GList. The input and output pointers could be identical, but since this is not
guaranteed, use the form here to reassign the list to a new value for every add/de-
lete. For example, the flock starts in flock_init as NULL, and is given its first
non-NULL value on the first call to add_to_flock.

BINARY TREES The binary tree takes the linked list a step further by giving each

node two outgoing pointers instead of one. As per Figure 6.7, think

of these pointers as the left pointer and the right pointer. The branching allows for

a tree structure. The directions to an element are now less than trivial—to get to

bird5, start at the head (birdl), then go left, then go right. But with eight data

points in a linked list, you would need up to seven steps to get to any element, and

on average 3.5 steps. In a tree, the longest walk is three steps, and the average is

1.625 steps. Generally, the linked list will require on the order of n steps to find

an item, and a b-tree will require on the order of In(n) steps (Knuth, 1997, pp
400-401).

The tree arrangement needs some sort of order to the elements, so the system
knows whether to go left or right at each step. In this case, the id for each bird
provides a natural means of ordering. For text data, strcmp would provide a simi-
lar ordering. More generally, there must be a key value given to each element, and
the tree structure must have a function for comparing keys.

Eariler, you saw an interesting implementation of a set of binary trees: a data-
base. Since databases require fast access to every element, it is natural that they
would internally structure data in a binary tree, and this is exactly how SQLite and
mySQL operate internally: each new index is its own tree.

This adds some complication, because you now need to associate with each tree
a function for comparing keys. In the code below, g_tree_new initializes a tree
using the compare_birds function.

3For those who follow the reference, notice that Knuth presents the equation for the sum of path lengths, which
he calls the internal path length. He finds that it is of order n In(n) 4+ O(n) for complete binary trees; the average
path length is thus In(n) + O(1).



gsl_stats

MORE CODING TOOLS

March 24, 2009

201

bird 5

left

right

AN

bird 3 bird 7
Jeft | right left | right
bird 2 bird 4 bird 6 bird 8
left | right left | right left | right left | right
bird 1
left | right

Figure 6.7 The archetypal binary tree. Online source: btree.dot.

What if two birds have the same
id? Then there is no way to order
them uniquely, and therefore there
is no way to reliably store and re-
trieve them. Thus, the key for each
element must be unique.*

The added complication of a tree
solves many of the problems above.
As with the list, inserting and delet-
ing elements does not require major
reallocing, although there is often
minor internal reshuffling to keep
the branches of the tree at about
even length. With the key and short

The const keyword

The const modifiers in the header for compare_-
keys indicate that the data to which the pointers point
will not be changed over the course of the function.
As you can see by the fact that it has not appeared un-
til page 201, the const keyword is mostly optional,
though it is good form and provides one more check
that your functions don’t do what you hadn’t intended.
However, when conforming with function specifica-
tions elsewhere, like GLib’s function header for key-
comparison functions, you may need to use it. If you
then get an error like “subfunction’ discards qualifiers
from pointer target type, then you will need to rewrite
the subfunction so that it too takes const inputs (and
does not modify them).

chains, finding an element is much faster.

#include "birds.h"
#include <glib.h>

GTree #flock = NULL;
int hawks, doves;

const int xLb=1L;
const int *Rb =R;
return xLb — «Rb;

static gint compare_keys(const void L, const void =R){

4There exist tree implementations that do not require unique keys, but it is a requirement for GLib. Similarly,
some databases are very strict about requiring that each table have a field representing a key, and some are not.
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static gboolean tree_bird_plays(void xkey, void =in, void #v){
bird_plays(in, NULL);
return O;

}

void flock_plays(){ g_tree_foreach(flock, tree_bird_plays, NULL); }
void add_to_flock(bird+ b){ g_tree_insert(flock, &(b—>id), b); }
bird * find_opponent(int n){return g_tree_lookup(flock, &n);}

int flock_size(){ return g_tree_nnodes(flock); }

static gboolean wealth_foreach(void xkey, void xin, void st){
int xtotal =t;
«total += ((bird=)in)—>wealth;
return 0; }

int flock_wealth(){
int total = 0;
g_tree_foreach(flock, wealth_foreach, &total);
return total; }

static gboolean tree_bird_count(void :key, void :in, void +v){
if (((bird *)in)—>type =="h’)
hawks ++;
else doves ++;
return 0; }

GList *dying_birds;
void free_bird(bird: b){dying_birds = g_list_prepend(dying_birds, b);}

static gboolean tree_birth_or_death (void xkey, void «in, void :t){
birth_or_death(in, t);
return O; }

static void cull_foreach(void b, void #v){
bird+ a_bird = b;

g_tree_remove(flock, &(a_bird—>id));
free(a_bird); }

double count(int period){
int total_wealth =flock_wealth();

hawks = doves = 0;
dying_birds = NULL;
g_tree_foreach(flock, tree_birth_or_death, &total_wealth);
g_list_foreach(dying_birds, cull_foreach, NULL);
g_list_free(dying_birds);
g_tree_foreach(flock, tree_bird_count, NULL);
printf("%i\t%i\t%i\n", period, hawks, doves);
return (doves+0.0)/hawks; }

void flock_init(){ flock = g_tree_new(compare_keys); }

Listing 6.8 The birds, binary tree version. The fatal flaw is the complication in maintaining the key
for every bird. Online source: birds/treeflock.c
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* Culling the flock is especially difficult because a tree can internally re-sort when
an element is added/deleted, so it is impossible to delete elements while traversing
a tree. In the implementation of Listing 6.8, the free_bird function actually freed
the bird; here it just adds dying birds to a GList, and then another post-traversal
step goest through the GList and cull marked birds from the tree.

» There are various means of organizing large data sets, such as collec-
tions of agents in an agent-based model.

» Arrays are simply sequential blocks of structs. Pros: easy to imple-
ment; you can get to the 10, 000th element in one step. Cons: no easy
way to add, delete, or reorganize elements.

z » A linked list is a sequence of structs, where each includes a pointer to
the next element in the list. Pro: adding/deleting/resorting elements is
trivial. Con: Getting to the 10, 000th element takes 9,999 steps.

» A binary tree is like a linked list, but each struct has a left and right
successor. Pros: adding and deleting is only marginally more diffi-
cult than with a linked list; getting to the 10,000th element takes at
most 13 steps. Con: Each element must be accessed via a unique key,
adding complication.

6.3 PARAMETERS Your simulations and analyses will require tweaking. You
will want to try more agents, or you may want your program
to load a data set from a text file to a database for one run and then use the data in

the database for later runs.

This section will cover a cavalcade of means of setting parameters and specifica-
tions, in increasing order of ease of use and difficulty in implementation.

The first option—a default of sorts—is to set variables at the top of your .c file
or a header file. This is trivial to implement, but you will need to recompile every
time you change parameters.

Interactive  The second option is to interactively get parameters from the user, via
scanf and fgets. Listing 6.9 shows a program that asks data of the

user and then returns manipulated data. The scanf function basically works like
printf in reverse, reading text with the given format into pointers to variables.
Unfortunately, the system tends to be rather fragile in the real world, as a stray
comma or period can entirely throw off the format string. The fgets function will
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read an entire line into a string, but has its own quirks. In short, the interactive
input features are good for some quick interrogations or a bit of fun, but are not to
be heavily relied upon.

#include <stdio.h>
#include <string.h> //strien

int main(){

float indata;

char s[100];
printf("Give me a number: ");
scanf("%g", &indata);
printf(" Your number squared: %g\n", indataxindata);
printf("OK, now give me a string (max length, 100):\n");
fgets(s, 99, stdin); /eat a newline.
fgets(s, 99, stdin);
printf("Here it is backward:\n");
for (int i=strlen(s)—2; i>=0; i——)

printf("%c", s[i]);

printf("\n");

Listing 6.9 Reading inputs from the command line. Online source: getstring.c.

Environment variables  These are variables passed from the shell (aka the com-

mand prompt) to the program. They are relatively easy to
set, but are generally used for variables that are infrequently changing, like the
username. Environment variables are discussed at length in Appendix A.

Parameter files  There are many libraries that read parameter files; consistent with

the rest of this chapter, Listing 6.10 shows a file in Glib’s key file
format, which will be read by the program in Listing 6.11. The configuration file
can be in a human language like English, you can modify it as much as you want
without recompiling the code itself, it provides a permanent record of parameters
for each run, and you can quickly switch among sets of variables.

The payoff for Listing 6.11 is on line 22: printing the name of a distribution, a
parameter, and the mean of that distribution given that parameter. The program to
that point finds these three items.

Line seven indicates which section of Listing 6.10 the following code will read.
By commenting out line seven and uncommenting line eight, the code would read
the Exponential section. Below, you will see that setting the config variable on
the command line is not difficult.

* Line 10 reads the entire glib.config file into the keys structure. If something



gsl_stats March 24, 2009

MORE CODING TOOLS 205

03N NN~

[N T NS T NS I NS I S I e e e e )
A LU=, OO INN R WD~ OO

#gkeys.c reads this file

[chi squared configuration]
distribution name = Chi squared
parameter =3

[exponential configuration]
distribution name = Exponential
parameter = 2.2

Listing 6.10 A configuration in the style of Glib’s key files. Online source: glib.config.

#include <glib.h>
#include <apop.h>

int main(){
GKeyFile xkeys = g_key_file_new();
GError ¢ = NULL;
char xconfig = "chi squared configuration";
// char xconfig = "exponential configuration";
double (xdistribution)(double, double);
if (!g_key_file_load_from_file(keys, "glib.config", 0, &e))
fprintf(stderr, e—>message);
double param = g_key_file_get_double(keys, config, "parameter", &e);
if (e) fprintf(stderr, e—>message);
char:x name = g_key_file_get_string(keys, config, "distribution name", &e);
if (e) fprintf(stderr, e—>message);

if (!strcmp(name, "Chi squared"))
distribution = gsl_cdf_chisq_Pinv;

else if (!strcmp(name, "Exponential"))
distribution = gsl_cdf_exponential_Pinv;

printf("Mean of a %s distribution with parameter %g: %g\n", name,
param, distribution(0.5, param));

Listing 6.11 A program that reads Listing 6.10. Online source: gkeys.c.

goes wrong, then line 11 prints the error message stored in e. Properly, the program
should exit at this point; for the sake of brevity the return O lines have been
omitted.

Now that keys holds all the values in the config file, lines 12 and 14 can get indi-
vidual values. The two g_key_file_get. .. functions take in a filled key struc-
ture, a section name, a variable name, and a place to put errors. They return the
requested value (or an error).
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» Unfortunately, there is no way to specify functions in a text file but by name, so
lines 17-20 set the function pointer distribution according to the name from
the config file.

Rewrite the code in Listing 6.11 to set parameters via database, rather than
via the command line.

* Write a text file with three columns: configuration, parameters, and
data.

Q * Read in the file using apop_text_to_db at the beginning of main.
6.5

* Write a function with header double get_param(char *config,
char *p) that queries the database for the parameter named p in the
configuration group config and returns its value. Then modify the
program to get the distribution and its parameter using the get _param
function.

Command line  Reading parameters from the command line can take the most ef-

fort to implement among the parameter-setting options here, but it

is the most dynamic, allowing you to change parameters every time you run the

program. You can even write batch files in Perl, Python, or a shell-type language to

run the program with different parameter variants (and thus keep a record of those
variants).

The main function takes inputs and produces an output like any other. The output
is an integer returned at the end of main, which is typically zero for success or a
positive integer indicating a type of failure. The inputs are always an integer, giving
the number of command-line elements, and a char**—an array of strings—Ilisting
the command-line elements themselves. Like any function specification, the types
are non-negotiable but the internal name you choose to give these arguments is
arbitrary. However, the universal custom is to name them argc (argument count)
and argv (argument values).” This is an ingrained custom, and you can expect to
see those names everywhere.®

Listing 6.12 shows the rudimentary use of argc and argv. Here is a sample usage
from my command line:

SThey are in alphabetical order in the parameters to main, which provides an easy way to remember that the
count comes first.

®Perl uses argv, Python uses sys.argv, and Ruby uses ARGV. All three structures automatically track array
lengths, so none of these languages uses an argc variable.
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#include <stdio.h>

int main(int argc, char #sargv){
for (int i=0; i< argc; i++)
printf("Command line argument %i: %s\n", i, argv[i]);

}

Listing 6.12 This program will simply print out the command line arguments given to it. Online
source: argv.c.

>>> /home/klemens/argv one 2 ——three fo\ ur "cinco —— \"five\""
command line argument 0: /home/klemens/argv

command line argument 1: one

command line argument 2: 2

command line argument 3: ——three

command line argument 4: fo ur

command line argument 5: cinco —— "five"

Argument zero (argv[0]) is always the name of the command itself. Some cre-
ative programs run differently if they are referred to by different names, but the
norm is to just skip over argv [0].

After that, the elements of argv are the command line broken at the spaces, and
could be dashes, numbers, or any other sort of text.

As you can see from the parsing of fo\ ur, a space preceded by a backslash is
taken to be a character like any other, rather than an argument separator.

Argument five shows that everything between a pair of quotation marks is a single
argument, and a backslash once again turns the quotation mark into plain text.

For some purposes, this is all you will need to set program options from your
command line. For example you could have one program to run three different
actions with a main like the following:

int main(int argc, int #=xargv){

if (arge == 1){
printf("I need a command line argument.\n")
return 1;

}

if (!stremp(argv[1], "read"))
read_data();

else if (!strcmp(argv[1], "analysis_1"))
run_analysis_1();

else if (!strcmp(argv[1], "analysis_2"))
run_analysis_2();
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The callbyval.c program (Listing 2.5, page 38) calculated the factorial
of a number which was hard-coded into main. Rewrite it to take the number

Qaﬁ from the command line, so factorial 15 will find 15!. (Hint: the atoi
function converts a text string to the integer it represents; for example,
atoi("15") == 15.)

getopt  For more complex situations, use getopt, which parses command lines for
switches of the form -x. . .. It is part of the standard C library, so it is fully
portable.”

Listing 6.13 shows a program that will display a series of exponents. As explained
by the message on lines 9-14, you can set the minimum of the series via -m, the
maximum via -M, and the increment via -i. Specify the base of the exponents
after the switches. Sample usage (which also demonstrates that spaces between
the switch and the data are optional):

>>> /getopt —m 3 —M4 —i10.3 2
273: 8

273.3: 9.84916

273.6: 12.1257

273.9: 14.9285

There are three steps to the process:

e #include <unistd.h>.

» Specify a set of letters indicating valid single-letter switches in a crunched-
together string like line 15 of Listing 6.13. If the switch takes in additional
info (here, every switch but -h), indicate this with a colon after the letter.

* Write a while loop to call getopt (line 27), and then act based upon the
value of the char that getopt returned.

* argyv is text, but you will often want to specify numbers. The functions atoi, atol,
and atof convert ASCII text to an int, long int, or double, respectively.8

"The GNU version of the standard C library provides a sublibrary named argp that provides many more
functions and does more automatically, but is correspondingly more complex and less portable. Glib also has a
subsection devoted to command-line arguments, which also provides many more features so long as the library is
installed.

8Getopt readily handles negative numbers that are arguments to a flag (-m -3), but a negative number after the
options will look like just another flag, e.g., ./getopt -m -3 -M 4 -2looks as if there is a flag named 2. The
special flag - - indicates that getopt should stop parsing flags, so ./getopt -m -3 -M 4 -- -2 will work.
This is also useful elsewhere, such as handling files that begin with a dash; e.g., given a file named -a_mistake,
you can delete it with rm -- -a_mistake.



gsl_stats March 24, 2009

MORE CODING TOOLS

209

0NN AW~

BB WL LWL L LWL W NN NN NN /e e e e e
— OV O 1IN NPAE WD, OOV IAAWUN A WNDFR,OOVUXINWNDAWN—=ON\V©

#include <stdio.h> //printf
#include <unistd.h> //getopt
#include <stdlib.h> /atof
#include <math.h> /powf

double min = 0., max = 10.;
double incr = 1., base =2.;

void show_powers(){
for (double i=min; i<=max; i+= incr)
printf("%g"%g: %g\n", base, i, powf(base, 1));
}

int main(int argc, char == argv){

char c, opts[]= "M:m:i:h";

char help[]="A program to take powers of a function. Usage:\n"
"\t\tgetopt [options] [a number]\n"
"—h\t This help\n"
"—m\t The minimum exponent at which to start.\n"
"—M\t The maximum exponent at which to finish.\n"
"—i\t Increment by this.\n";

if (arge==1) {
printf(help);
return 1;
}
while ( (c=getopt(argc, argv, opts)) = —1)
if (c=="h"){
printf(help);
return 0;
} else if (c=="m’){
min = atof(optarg);
} else if (c=="M"){
max = atof(optarg);
} else if (c=="1"){
incr = atof(optarg);
}
if (optind < argc)
base = atof(argv[optind]);
show_powers();

Listing 6.13 Command-line parsing with getopt. Online source: getopt.c.

* optarg also sets the variable optind to indicate the position in argv that it last
visited. Thus, line 38 was able to check whether there are any non-switch argu-
ments remaining, and line 39 could parse the remaining argument (if any) without

getopt’s help.
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* The program provides human assistance. If the user gives the -h switch or leaves
off all switches entirely, then the program prints a help message and exits. Every
variable that the user could forget to set via the command line has a default value.

Listing 6.1 (page 191) is hard-coded to plot a range from z = 0 to z = 15.
Qm Modify it to use getopt to get a minimum and maximum from the user,
with zero and fifteen as defaults. Provide help if the user uses the -h flag.

» There are many ways to change a program’s settings without having
to recompile the program.

» Environment variables, covered in Appendix A, are a lightweight
means of setting variables in the shell that the program can use.

z » There are many libraries for parsing parameter files, or you could use
SQL to pull settings from a database.

» Themain function takes in arguments listed on the command line, and
some C functions (like getopt) will help you parse those arguments
into program settings.

6.4 % SYNTACTIC SUGAR Returning to C syntax, there are several ways to do
almost everything in Chapter 2. For example, you
could rewrite the three lines

b=(@1>]));
a+=Db;
i++;

as the single expression a+=b=i++>j;. The seventh element of the array k can be
called k[6], *(k+6), or—for the truly perverse—6 [k]. That is, this book over-
looks a great deal of C syntax, which is sometimes useful and even graceful, but
confuses as easily as it clarifies.

This section goes over a few more details of C syntax which are also not strictly
necessary, but have decent odds of being occasionally useful. In fact, they are
demonstrated a handful of times in the remainder of the book. If your interest is
piqued and you would like to learn more about how C works and about the many
alternatives that not mentioned here, see the authoritative and surprisingly readable
reference for the language, Kernighan & Ritchie (1988).
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The obfuscatory if  There is another way to write an if statement:

if a<b)

first_val;
else

second_val;

/% is equivalent to +/

a<b ?first_val : second_val;

Both have all three components: first the condition, then the ‘what to do if the
condition is true’ part, and then the ‘what to do if the condition is false’ part.
However, the first is more-or-less legible to anybody who knows basic English,
and the second takes the reader a second to parse every time he or she sees it. On
the other hand, the second version is much more compact.

The condensed form is primarily useful because you can put it on the right side
of an assignment. For example, in the new_chick function of Listing 6.3 (p 195),
you saw the following snippet:

if (gsl_rng_uniform(r) > 0.5)
out—>type =’d’;

else
out—>type =’h’;

Using the obfuscatory if, these four lines can be reduced to one:

[0ut—>type = gsl_rng_uniform(r) >0.5?°d’ : ’h’;

Macros  As well as #include-ing files, the preprocessor can also do text substitu-
tion, where it simply replaces one set of symbols with another.

Text substitution can do a few things C can’t do entirely by itself. For example, you
may have encountered the detail of C that all global variables must have constant
size (due to how the compiler sets them up).” Thus, if you attempt to compile the
following program:

9Global and static variables are initialized before the program calls main, meaning that they have to be al-
located without evaluating any non-constant expressions elsewhere in the code. Local variables are allocated as
needed during runtime, so they can be based on evaluated expressions as usual.
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int array_size = 10;
int a[array_size];

int main(){ }

you will get an error like variable-size type declared outside of any
function.

The easy alternative is to simply leave the declaration at the top of the file but move
the initialization into main, but you can also fix the problem with #define. The
following program will compile properly, because the preprocessor will substitute
the number 10 for ARRAY_SIZE before the compiler touches the code:

#define ARRAY_SIZE 10
int a]ARRAY_SIZE];

int main(){ }

Do not use an equals sign or a semicolon with #defines.

You can also #define function-type text substitutions. For example, here is the
code for the GSL_MIN macro from the <gsl/gsl_math.h> header file:

[#deﬁne GSL_MIN(a,b) ((a) < (b) ? (a) : (b))

It would expand every instance in the code of GSL_MIN(a,b) to the if-then-else
expression in parens. GSL_MAX is similarly defined.

This is a macro, which is evaluated differently from a function. A function evalu-
ates its arguments and then calls the function, so £ (2+3) is guaranteed to evaluate
exactly as £ (5) does. A macro works by substituting one block of text for another,
without regard to what that text means. If the macro is

[#deﬁne twice(X) 2#x

then twice (2+3) expands to 2*2+3, which is not equal to twice(5) = 2x5.

We thus arrive at the first rule of macro writing, which is that everything in the
macro definition should be in parentheses, to prevent unforseen interactions be-
tween the text to be inserted and the rest of the macro.
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Repeated evaluation is another common problem to look out for. For example,
GSL_MIN(a++, b) expandsto ((a++) < (b) ? (a++) : (b)), meaning thata
may be incremented twice, not once as it would with a function. Again, the first
solution is to not use macros except as a last resort, and the second is to make sure
calls to macros are as simple as possible.

The one thing that a macro can do better than a function is take a type as an argu-
ment, because the preprocessor just shunts text around without regard to whether
that text represents a type, a variable, or whatever else. For example, recall the
form for reallocating a pointer to an array of doubles:

[Var_array = realloc(var_array, new_length = sizeof(double))

This can be rewritten with a macro to create a simpler form:

#define REALLOC(ptr, length, type) ptr = realloc((ptr), (length) : sizeof(type))
//which is used like this:
REALLOC(var_array, new_length, double);

It gives you one more moving part that could break (and which now needs to be
#included with every file), but may make the code more readable. This macro
also gives yet another demonstration of the importance of parens: without parens,
a call like REALLOC (ptr, 8 + 1, double) would allocate 84 sizeof(double)
bytes of memory instead of 9 - sizeof(double) bytes.

If you need to debug a macro, the -E flag to gcc will run only the preprocessor, so
you can see what expands to what. You probably want to run gcc -E onefile.c
| less.

The custom is to put macro names in capitals. You can rely on this in code you see
from others, and are encouraged to stick to this standard when writing your own,
as a reminder that macros are relatively fragile and tricky. Apophenia’s macros can
be written using either all-caps or, if that looks too much like yelling to you, using
only an initial capital.

» Short if statements can be summarized to one line via the condi-
tion ? true_value : false_value form.

» You can use the preprocessor to #define constants and short func-
tions.
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6.5 MORE TOOLS Since C is so widely used, there is an ecosystem of tools

built around helping you easily write good code. Beyond the

debugger, here are a few more programs that will make your life as a programmer
easier.

MEMORY DEBUGGER The setup is this: you make a mistake in memory handling

early in the program, but it is not fatal, so the program con-

tinues along using bad data. Later on in the program, you do something innocuous

with your bad data and get a segfault. This is a pain to trace using gdb, so there are
packages designed to handle just this problem.

If you are using the GNU standard library (which you probably are if you are using
gcc), then you can use the shell command

[export MALLOC_CHECK_=2

to set the MALLOC_CHECK_ enviornment variable; see Appendix A for more on
environment variables. When it is not set or is set to zero, the library uses the usual
malloc. When it is set to one, the library uses a version of malloc that checks
for common errors like double-freeing and off-by-one errors, and reports them on
stderr. When the variable is set to two, the system halts on the first error, which
is exactly what you want when running via gdb.

Another common (and entirely portable) alternative is Electric Fence, a library
available via your package manager. It also provides a different version of malloc
that crashes on any mis-allocations and mis-reads. To use it, you would simply
recompile the program using the efence library, by either adding -1lefence to the
compilation command or the LINKFLAGS line in your makefile (see Appendix A).

REVISION CONTROL The idea behind the revision control system (RCS) is that

your project lives in a sort of database known as a reposi-

tory. When you want to work, you check out a copy of the project, and when you

are done making changes, you check the project back in to the repository and can

delete the copy. The repository makes a note of every change you made, so you

can check out a copy of your program as it looked three weeks ago as easily as you
could check out a current copy.

This has pleasant psychological benefits. Don’t worry about experimenting with
your code: it is just a copy, and if you break it you can always check out a fresh
copy from the repository. Also, nothing matches the confidence you get from mak-
ing major changes to the code and finding that the results precisely match the
results from last month.
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Finally, revision control packages facilitate collaboration with coauthors. If your
changes are sufficiently far apart (e.g., you are working on one function and your
coauthor on another), then the RCS will merge all changes to a single working
copy. If it is unable to work out how to do so, then it will give you a clearly
demarcated list of changes for you to accept or reject.

This method also works for any other text files you have in your life, such as papers
written in IZTEX, HTML, or any other text-based format. For example, this book is
under revision control.

There is no universal standard revision control software, but the Subversion pack-
age is readily available via your package manager. For usage, see Subversion’s
own detailed manual describing set-up and operation from the command line, or
ask your search engine for the various GUIs written around Subversion.

THE PROFILER If you feel that your program is running too slowly, then the first
step in fixing it is measurement. The profiler times how long every
function takes to execute, so you know upon which functions to focus your clean-

up efforts.

First, you need to add a flag to the compilation to include profiler symbols, -pg.
Then, execute your program, which will produce a file named gmon.out in the
directory, with the machine-readable timings that the profiler will use.!® Unlike
the debugger’s -g option, the -pg option may slow down the program significantly
as it writes to gmon . out, so use -g always and -pg only when necessary.

Finally, call gprof ./my_executable to produce a human-readable table from
gmon.out.!! See the manual (man gprof) for further details about reading the
output.

As with the debugger, once the profiler points out where the most time is being
taken by your program, what you need to do to alleviate the bottleneck often be-
comes very obvious.

If you are just trying to get your programs to run, optimizing for speed may seem
far from your mind. But it can nonetheless be an interesting exercise to run a mod-
estly complex program through the profiler because, like the debugger’s backtrace,
its output provides another useful view of how functions call each other.

101 the program is too fast for the profiler, then rename main to internal_main and write a new main
function with a for loop to call internal_main ten thousand times.

gprof outputs to stdout; use the usual shell tricks to manipulate the output, such as piping output through
a pager—gprof ./my_executable | less—or dumping it to a text file—gprof ./my_executable >
outfile—that you can view in your text editor.
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Optimization  The gcc compiler can do a number of things to your code to make

it run faster. For example, it may change the order in which lines of

code are executed, or if you assign x = y + z, it may replace every instance of x

with y + z. To turn on optimization, use the -03 flag when compiling with gcc.

[That’s an ‘O’ as in optimization, not a zero. There are also -01 and -02, but as
long as you are optimizing, why not go all out?]

The problem with optimization, however, is that it makes debugging difficult. The
program jumps around, making stepping through an odd trip, and if every instance
of x has been replaced with something else, then you can not check its value. It
also sometimes happens that you did not do your memory allocation duties quite
right, and things went OK without optimization, but suddenly the program crashes
when you have optimization on. A memory debugger may provide some clues, but
you may just have to re-scour your code to find the problem. Thus, the -03 flag
is a final step, to be used only after you are reasonably confident that your code is
debugged.

Add the -pg switch to the makefile in the birds directory and check the tim-

Q ing of the three different versions. It may help to comment out the printf

6.8 function and run the simulation for more periods. How does the -03 flag
change the timings?



gsl_stats

March 24, 2009

STATISTICS

I1




gsl_stats March 24, 2009



gsl_stats March 24, 2009

DISTRIBUTIONS FOR DESCRIPTION

This chapter covers some methods of describing a data set, via a number of strate-
gies of increasing complexity. The first approach, in Section 7.1, consists of simply
looking at summary statistics for a series of observations about a single variable,
like its mean and variance. It imposes no structure on the data of any sort. The next
level of structure is to assume that the data is drawn from a distribution; instead of
finding the mean or variance, we would instead use the data to estimate the param-
eters that describe the distribution. The simple statistics and distributions in this
chapter are already sufficient to describe rather complex models of the real world,
because we can chain together multiple distributions to form a larger model. Chap-
ter 8 will take a slightly different approach to modeling a multidimensional data
set, by projecting it onto a subspace of few dimensions.

7.1 MOMENTS The first step in analyzing a data set is always to get a quick lay
of the land: where do the variables generally lie? How far do
they wander? As variable A goes up, does variable B follow?

% ESTIMATOR VOCABULARY A statistic is the output of a function that takes in
data, typically of the form f : R — R. That is, a
statistic takes in data and summarizes it to a single dimension. Common statistics
include the mean of x, its variance, max(x), the covariance of x and y, or the
regression parameter 3o from a regression of X on y (which could be written in

the form (52(X,y)).
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Thus, many of the means of describing a data set, such as writing down its mean,
could be described as the generation of statistics. One goal of writing down a
statistic is dimension reduction: simply summarizing the data via a few human-
comprehensible summary statistics, such as the data set’s mean and variance.

Another goal, which is more often the case, is to use the statistics of the data, X, to
estimate the same statistic of the population. Let P signify the population. When
the US Census Bureau said in an August 2006 press release' that 46.6 million
people in the United States have no health insurance, they meant that the count
of people in the Current Population Survey that did not have health insurance (a
sample statistic) indicated that the count of people in the United States without
health insurance (a population statistic) was 46.6 million. Is the estimate of the
statistic based on the sample data, = f(X), a valid estimate of the population
statistic, 3 = f(P)? There are several ways to make this a precise question. For
example, as X grows larger, does B — (7 Do there exist estimates of 3 that have
smaller variance than 3? After discussing some desirable qualities in an estimator,
we will begin with some simple statistics.

% Evaluating an estimator  From a given population, one could take many possi-
ble samples, say 2(1, Xoa, ..., vyhich means that there
could be many possible calculated statistics, 51 = f(X1), 02 = f(Xa), ....

There are many means of describing whether the collection of statistics BZ (for
1 = 1,5 = 2,...) is a precise and accurate estimate of the true value of . You
will see in the sections to follow that intuitive means of estimating a population
statistic sometimes work on all of these scales at once, and sometimes fail.

* Unbiasedness: The expected value of B (discussed in great detail below) equals the
true population value: E(3;) = 3.

* Variance: The variance is the expected value of the squared distance to the expected
value: E ((ﬁ, - E(ﬁ))2> The variance is also discussed in detail below.

* Mean squared error: MSE of B = E(B — B3)%. Below we will see that the MSE
equals the variance plus the square of bias. So if 3 is an unbiased estimator of (3,

meaning that E(3) = (3, then the MSE is equivalent to the variance, but as the bias
increases, the difference between MSE and variance grows.

* Efficiency: An estimator B is efficient if, for any other estimator B, M SE([?) <
MSE((). If § and /3 are unbiased estimators of the same (3, then this reduces to

var(f) < var(3), so some authors describe an efficient estimator as the unbiased

1'US Census Bureau, “Income Climbs, Poverty Stabilizes, Uninsured Rate Increases,” Press release #CB06-
136, 29 August 2006, http://www.census.gov/Press-Release/www/releases/archives/income_
wealth/007419.html.
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estimator with minimum variance among all unbiased estimators.
We test this using inequality 10.1.7 (page 333), that the variance must be greater

than or equal to the Cramér—Rao lower bound. If var(/3) equals the CRLB, we
know we have a minimum variance.

« BLUE: 3 is the Best Linear Unbiased Estimator if var(3) < var(() for all linear
unbiased estimators B, and B is itself a linear function and unbiased.

* Aymptotic unbiasedness: Define Bn = f(z1,...,z,). For example, i1 = x1,
o = (1’1 + :L'g)/Q, 3 = (:L'1 + x9 + :L'3)/3, .... Then lim,, o E(ﬁn) = 0.
Clearly, unbiasedness implies asymptotic unbiasedness.

« Consistency: plim(3,) = 3, i.e., for a fixed small ¢, lim,, o, P(|3,— 3] > €) = 0.
Equivalently, lim,, oo P((5, — 8)? > €2) = 0.

One can verify consistency using Chebychev’s inequality; see, e.g., Casella &
Berger (1990, p 184).

In a sense, consistency is the asymptotic analog to the low MSE condition. If MSE
goes to zero, then consistency follows (but not necessarily vice versa).

However, a biased estimator or a high-variance estimator may have a few things
going for it, but an inconsistent estimator is just a waste. You could get yourself
two near-infinite samples and find that 3 is different for each of them—and then
what are you supposed to pick?

» Asymptotic efficiency: var(3) — the Cramér—Rao lower bound. This makes sense
only if 3’s asymptotic distribution has a finite mean and variance and  is consis-
tent.

EXPECTED VALUE Say that any given value of = has probability p(x). Then if f(z)
is an arbitrary function,

E(f(@)= [ flz)p(x)de.

vV
The p(z)dz part of the integral is what statisticians call a measure and everyone
else calls a weighting. If p(z) is constant for all x, then every value of x gets equal
weighting, as does every value of f(x). If p(x1) is twice as large as p(z2), meaning
that we are twice as likely to observe x1, then f(z1) gets double weighting in the
integral.

If we have a vector of data points, x, consisting of n elements z;, then we take
each single observation to be equally likely: p(z;) = %, Vi. The expected value
for a sample then becomes the familiar calculation

B = 247

and (given no further information about the population) is the Best Unbiased Esti-
mator of the true mean .2

2The term expected value implies that the mean is what we humans actually expect will occur. But if I have
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The variance for discrete data is the familiar
formula of the mean of the squared distance to
the average. Let X indicate the mean of the data vector x; then the best unbiased

VARIANCE AND ITS DISSECTIONS

estimate of the variance of the sample is

var(x) = — Z (z; — %),

Degrees of freedom

Rather than calculating the variance of a sample, say
that we seek the variance of a population, and have
only a sample from which to estimate the variance.
The best unbiased estimate of the variance of the pop-
ulation is

i(x) = — 3 (0~ %",

We can think of the sum being divided by n — 1 in-
stead of n (as in Equation 7.1.1) because there are only
n — 1 random elements in the sum: given the mean X
and n — 1 elements, the nth element is deterministi-
cally solved. That is, there are only n — 1 degrees of
freedom. An online appendix to this book provides a
more rigorous proof that Equation 7.1.2 is an unbiased
estimator of the population variance.

Asn — oo, 1/n ~ 1/(n — 1), so both the esti-
mate of variance based on 1/n and on 1/(n — 1) are
asymptotically unbiased estimators of the population
variance.

The number of degrees of freedom (df) will appear in
other contexts throughout the book. The df indicates
the number of dimensions in which the data could
possibly vary. With no additional information, this is
just the number of independently drawn variables, but
there may be more restrictions on the data. Imagine
three variables, which would normally have three di-
mensions, with the added restriction that z1 + 2z2 =
x3. Then this defines a plane (which happens to be
orthogonal to the vector (1,2, —1) and goes through
the origin). That is, by adding the restriction, the data
points have been reduced to a two-dimensional sur-
face. For the sample variance, the restriction is that the
mean of the sample is fi.

(7.1.2)

(7.1.1)

The square root of the variance is
called the standard deviation. It is
useful because the Normal distribu-
tion is usually described in terms
of the standard deviation (o) rather
than the variance (c?). Outside of
the context of the Normal, the vari-
ance is far more common.

The variance is useful in its own
right as a familiar measure of dis-
persion. But it can also be decom-
posed various ways, depending on
the situation, to provide still more
information, such as how much of
the variance is due to bias, or how
much variation is explained by a
linear regression. Since information
is extracted from the decomposi-
tion of variance time and time again
throughout classical statistics, it is
worth going over these various dis-
sections.

Recall from basic algebra that the
form (z + )2 expands to 22 + y% +
2zy. In some special cases the un-
sightly 2zy term can be eliminated
or merged with another term, leav-
ing the pleasing result that (z +
y)? =a® +y°

a one in a million chance of winning a two million dollar lottery, there are no states of the world where I am
exactly two dollars wealthier. Further, research pioneered by Kahneman and Tversky (e.g., Kahneman et al.
(1982)) found that humans tend to focus on other features of a probability distribution. They will consider events
with small probability to either have zero probability or a more manageable value (e.g., reading p = 1le—7 as
p = le—3). Or, they may assume the most likely state of the world occurs with certainty. Bear in mind that
human readers of your papers may be interested in many definitions of expectation beyond the mean.
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Throughout the discussion below X = E[x]; that is X is constant for a given data
set. The expectation of a constant is the constant itself, so E[x] is simply X; and

Ely*x] would expand to 2 37 | [y2%] =x- 13" | o2 =x - E[y?).

The first breakdown of variance is the equation as above:

var(x) =F [(x — 5()2]

=F [x —2XX +X ]

= E[x%] — E[2xx] + E[X*]
= B[x*] - 2B[x]* + B[x]?
= E[x?] — E[x]%

Read this as: var(x) is the expectation of the squared values minus the square of
the expected value. This form simplifies many transformations and basic results of
the type that frequently appear in probability homework questions.

Write a function to display var(x), E[x?], E[x]?, and E[x?] — E[x]? for any
Q” input data, then use it to verify that the first and last expressions are equal
for a few columns of data selected from any source on hand.

Mean squared error  The next breakdown appears with the mean squared error.

Say that we have a biased estimate of the mean, x; if you had

the true mean X, then you could define the bias as (X —X). It turns out that the MSE

is a simple function of the true variance and the bias. The value can be derived by
inserting —x + X = 0 and expanding the square:

MSE =

E(x
E[ <>-<—>~<>>2]
E[(x —0)* + 2B [(x - %)(x — 0] +  [(x — %)?]

var(x) — 2 - bias(X)E (x — X) + bias(x)?
var(x) 4 bias(x)?

In this case the middle term drops out because £ (x —X) = 0, and the MSE breaks
down to simply being the variance of x plus the bias squared.
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Within group/among group variance  The next breakdown of variance, common
in ANOVA estimations (where ANOVA is
short for analysis of variance), arises when the data is divided into a set of groups.
Then the total variance over the entire data set could be expressed as among group
variance and within group variance. Above, x consisted of a homogeneous se-
quence of elements x;, i = {1,...,n}, but now break it down into subgroups z;;,
where j indicates the group and ¢ indicates the elements within the group. There
is thus a mean X; for each group j, which is the simple mean for the n; elements
in that group. The unsubscripted X continues to represent the mean of the entire
sample. With that notation in hand, a similar breakdown to those given above can
be applied to the groups:

1 [& o
= D (@i =%+ % — %)
7 Li=1
1 [ ny B n; B ) ;j o B
== D@y = %)+ (% =R +2> (v — %)% — %)
j Li=1 i=1 i=1
(7.1.3)
1 n; n;
== D (i — %)+ ) (% — 2)2] (7.1.4)
i Li=1 =1

J
1 1 . _\9
== Z [njvar(x;)] + - Z [nj(xj - X) ]
J J

The transition from Equation 7.1.3 to 7.1.4 works because (X; — X) is constant
for a given j, and > .7, (z;; — X;) = X; — X; = 0. Once again, the unsightly
middle term cancels out, and we are left with an easily interpretable final equation.
In this case, the first element is the weighted mean of within-group variances, and
the second is the weighted among-group variance, where each group is taken to be
one unit at X;, and then the variance is taken over this set of group means.

The data-metro.db set gives average weekday passenger boardings at every sta-
tion in the Washington Metro subway system, from the founding of the system in
November 1977 to 2007.3 The system has five lines (Blue, Green, Orange, Red,
Yellow), and Listing 7.1 breaks down the variance of ridership on the Washington
Metro into within-line and among-line variances.

 Line 20 is the query to join the riders and lines tables. The parens mean that it

3As a Washington-relevant detail, all post-’77 measurements were made in May, outside the peak tourist
season.



gsl_stats March 24, 2009

DISTRIBUTIONS FOR DESCRIPTION 225
1 | #include <apop.h>
2
3 | void variance_breakdown(char xtable, char xdata, char s«grouping){
4 apop_data: aggregates = apop_query_to_mixed_data("mmw",
5 "select var_pop(%s) var, avg(%s) avg, count(x) from %s group by %s",
6 data, data, table, grouping);
7 APOP_COL_T(aggregates, "var", vars);
8 APOP_COL_T(aggregates, "avg", means);
9 double total= apop_query_to_float("select var_pop(%s) from %s", data, table);
10 double mean_of_vars = apop_vector_weighted_mean(vars, aggregates —>weights);
11 double var_of_means = apop_vector_weighted_var(means, aggregates—>weights);
12 printf("total variance: %g\n", total);
13 printf("within group variance: %g\n", mean_of_vars);
14 printf("among group variance: %g\n", var_of_means);
15 printf("sum within+among: %g\n", mean_of_vars + var_of_means);
16 | }
17
18 | int main(){
19 apop_db_open("data—metro.db");
20 char joinedtab[] = "(select riders/100 as riders, line from riders, lines \
21 where lines.station =riders.station)";
22 variance_breakdown(joinedtab, "riders", "line");
23 |}

Listing 7.1 Decomposing variance between among-group and within-group. Online source:
amongwithin.c.

can comfortably be inserted into a from clause, as in the query on line four.*
* The query on line 9 pulls the total variance—the total sum of squares—and the
query on lines 4-6 gets the within-group variances and means.

* Lines 10 and 11 take the weighted mean of the variances and the weighted variance
of the means.

* Lines 14-17 print the data to screen, showing that these two sub-calculations do
indeed add up to the total variance.

Rewrite the program to use the data-wb.db data set (including the classes
@7'2 table) to break down the variance in GDP per capita into within-class and
among-class variance.

Within-group and among-group variance is interesting by itself. To give one ex-
ample, Glaeser et al. (1996, Equation 8) break down the variance in crime into

4Using a subquery like this may force the SQL interpreter to re-generate the subtable for every query, which
is clearly inefficient. Therefore, when using functions like apop_anova in the wild, first run a create table
... query to join the data, perhaps index the table, and then send that table to the apop_anova function.
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within-city and among-city variances, and find that among-city variance is orders
of magnitude larger than within-city variance.

Returning to the Metro data, we could group data by year, and look for within- and
among-group variation in that form, or we could group data by line and ask about
within- and among-group variation there.

#include <apop.h>

int main(){
apop_db_open("data—metro.db");
char joinedtab[] = "(select year, riders, line \
from riders, lines \
where riders.station = lines.station)";

apop_data_show(apop_anova(joinedtab, "riders", "line", "year"));

}

Listing 7.2 Produce a two-way ANOVA table breaking variance in per-station passenger boardings
into by-year effects, by-line effects, an interaction term, and the residual. Online source:
metroanova.c.

Listing 7.2 produces an ANOVA table, which is a spreadsheet-like table giving the
within-group and among-group variances. The form of the table dates back to the
mid-1900s—ANOVA is basically the most complex thing that one can do without
a matrix-inverting computer, and the tabular form facilitates doing the calculation
with paper, pencil, and a desk calculator. But it still conveys meaning even for
those of us who have entirely forgotten how to use a pencil.

The first three rows of the output present the between-group sum of squares. That
is, if we were to aggregate all the data points for a given group into the mean,
how much variation would remain? With groupingl and grouping2, there are
three ways to group the data: group by grouping! [(Green line), (Red line),...],
group by grouping2 [(1977), (1978), ..., (2007)], and the interaction: group
by groupingl, grouping2 [(Green Line, 1977), (Red Line, 1977), ...(Green
Line, 2007), (Red Line, 2007)]. Using algebra much like that done above, we can
break down the total sum of squares into (weighted sum of squares, groupingl) +
(weighted sum of squares, grouping2) + (weighted sum of squares, grouping1,
grouping2) + (weighted sum of squares, residual).

We can compare the weighted grouped sums to the residual sum, which is listed as
the F’ statistic in the ANOVA table. As will be discussed in the chapter on testing
(see page 309), an F' statistic over about two is taken to indicate that the grouping
explains more variation than would be explained via a comparable random group-
ing of the data. The output of this example shows that the grouping by year is very
significant, as is the more refined interaction grouping by line and year, but the
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grouping by line is not significant, meaning that later studies may be justified in
not focusing on how the subway stations are broken down into lines.

Most stations are on multiple lines, so a station like Metro Center is included
in the Blue, Orange, and Red groups. In fact, the Yellow line has only two
stations that it doesn’t share with other lines. [ You can easily find an online
map of the Washington Metro to verify this.] This probably causes us to un-
@7' 3 derestimate the importance of the per-line grouping. How would you design
a grouping that puts all stations in only one group? It may help in implemen-
tation to produce an intermediate table that presents your desired grouping.
Does the ANOVA using your new grouping table show more significance to
the line grouping?

By changing the second group in the code listing from "year" to NULL, we would
get a one-way ANOVA, which breaks down the total sum of squares into just
(weighted sum of squares, groupingl) + (weighted sum of squares, residual).
The residual sum of squares is therefore larger, the df of the residual is also larger,
and in this case the overall change in the F’ statistic is not great.

% Regression variance  Next, consider the OLS model, which will be detailed in
Section 8.2.1. In this case, we will break down the ob-
served value to the estimated value plus the error: y = yest + €.

var(y) = E [(Yest + € — §)?]
=F [(Yest — }_’)2] + E[E2] +2F [(yest - }_/)E]

It will be shown below that yest € = Bor,gXe = 0 (because Xe = 0), and € = 0,
so E[ye] = yE[e] = 0. Thus, the 2E]. .. ] term is once again zero, and we are left
with

var(y) = E [(Yest — ¥)?] + E[€?] (7.1.5)
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Make the following definitions:

SST = total sum of squares
=E [y -9)
=var(y)
S'S R = Regression sum of squares
=F [(yest - S’)2]
SSE = Sum of squared errors
= E[€?]

Then the expansion of var(y) in Equation 7.1.5 could be written as

SST =SSR+ SSE.

This is a popular breakdown of the variance, because it is relatively easy to cal-
culate and has a reasonable interpretation: total variance is variance explained by
the regression plus the unexplained, error variance. As such, these elements will
appear on page 311 with regard to the F' test, and are used for the common coeffi-
cient of determination, which is an indicator of how well a regression fits the data.
It is defined as:

_ SSR
—SST
. SSE
N SST"

R2

You will notice that the terminology about the sum of squared components and the
use of the F' test matches that used in the ANOVA breakdowns, which is not just
a coincidence: in both cases, there is a portion of the data’s variation explained by
the model (grouping or regression), and a portion that is unexplained by the model
(residual). In both cases, we can use this breakdown to gauge whether the model
explains more variation than would be explained by a random grouping. The exact
details of the F' test will be delayed until the chapter on hypothesis testing.

COVARIANCE  The population covariance is 02, = 13" (z; — X)(y; — ¥), which

Xy — n
is equivalent to E[xy| — E[x]Ely]. [Q: Re-apply the first variance
expansion above to prove this.] The variance is a special case where x = y.

As with the variance, the unbiased estimate of the sample covariance is siy =
o2 —g.ie., Y (z —X)(y —¥) divided by n — 1 instead of n.

ry " n

Given a vector of variables x1,Xo,...X,, we typically want the covariance of
every combination. This can neatly be expressed as a matrix
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2 2 2

0-1 0-12 .. O-ln
2 2 2

0-21 0-2 e O-Zn
. )
2 2 2

Onl Ong - Op

where the diagonal elements are the variances (i.e., the covariance of x; with itself
for all 7), and the off-diagonal terms are symmetric in the sense that J?j = sz'i for
all < and j.

Correlation and Cauchy—Schwarz:  The correlation coefficient (sometimes called
the Pearson correlation coefficient) is

Oxy
OxOy

Pxy =

By itself, the statistic is useful for looking at the relations among columns of data,
and can be summarized into a matrix like the covariance matrix above. The cor-
relation matrix is also symmetric, and has ones all along the diagonal, since any
variable is perfectly correlated with itself.

The Cauchy—Schwarz inequality, 0 < p?> < 1, puts bounds on the correlation
coefficient. That is, p is in the range [—1,1], where p = —1 indicates that one
variable always moves in the opposite direction of the other, and p = 1 indicates
that they move in perfect sync.

The matrix of correlations is another popular favorite for getting basic descrip-
tive information about a data set; produce it via apop_data_correlation. The
correlation matrix will be the basis of the Cramér—Rao lower bound on page 333.

MORE MOMENTS Given a continuous probability distribution from which the data
was taken, you could write out the expectation in the variance
equation as an integral,

STt would be a digression to prove the Cauchy—Schwarz inequality here, but see Holder’s inequality in any
probability text, such as Feller (1966, volume II, p 155).
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Similarly for higher powers as well:

sk (f(a)) = |
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()~ F@)) playde

kurtosis (f(z)) = /\m (f(a:) - m>4p(:n)dm.

These three integrals are central moments of f(z). They are central because we
subtracted the mean from the function before taking the second, third, or fourth

power.®

Transformed moments

Let S and K be the third and fourth central moments
as given here. Some use a standardized moment for
kurtosis, which may equal KC} = K/(c?)?, Ky =
K/(0%)? — 3, or whatever else the author felt would
be convenient. Similarly, some call S’ = S/(0?)%/?
the skew. These adjustments are intended to ease com-
parisons to the standard Normal and to acommodate
differences in scale.

The only way to know what a given source means
when it refers to skew and kurtosis is to look up the
definitions. The GSL uses K5 (because engineers are
probably comparing their data to a standard Normal);
Apophenia uses K (because the corrections can add
complication in situations outside the Normal distri-
bution, and is easy to make when needed).

What information can we get from
the higher moments? Section 9.1
will discuss the powerful Central
Limit Theorem, which says that if a
variable represents the mean of a set
of independent and identical draws,
then it will have an N (p, o) distri-
bution, where 1 and o are unknowns
that can be estimated from the data.
These two parameters completely
define the distribution: the skew of
a Normal is always zero, and the
kurtosis is always 30. If the kurto-
sis is larger, then this often means
that the assumption of independent
draws is false—the observations are

interconnected. One often sees this among social networks, stock markets, or other
systems where independent agents observe and imitate each other.

Positive skew indicates that a distribution is upward leaning, and a negative skew
indicates a downward lean. Kurtosis is typically put in plain English as fat tails:
how much density is in the tails of the distribution? For example, the kurtosis of
an NV (0, 1) is three, while the kurtosis of a Student’s ¢ distribution with n degrees
of freedom is greater than three, and decreases as n — oo, converging to three
(see page 365 for a full analysis). An un-normalized kurtosis > 30 is known as
leptokurtic and < 30* is known as platykurtic; see Figure 7.3 for a mnemonic.

The caveats about unbiased estimates of the sample versus population variance
(see box, page 222) also hold for skew and kurtosis: calculating the mean as done in
the definitions above leads to a biased estimate of the population skew or kurtosis,
but there are simple corrections that can produce an unbiased estimate. An online

%The central first moment is always zero; the non-central second, third, ..., moments are difficult to interpret
and basically ignored. Since there is no ambiguity, some authors refer to the useful moments as the nth moment,
n € {1,2, 3,4}, and leave it as understood when the moment is central or non-central.
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* In case any of my readers may be unfamiliar with the term ¢‘kurtosis” we may define meso-
kurtic as * having 8, equal to 3,” while platykurtic curves have B8, <3 and leptokurtic>3. The
important property which follows from this is that platykurtic curves have shorter “tails” than the

- S ((

(.

normal curve of error and leptokurtic longer ‘‘tails.” I myself bear in mind the meaning of the words
by the above memoria technica, where the first figure represents platypus, and the second kangaroos,
noted for ¢‘lepping,” though, perhaps, with equal reason they should be hares!

Figure 7.3 Leptokurtic, mesokurtic and platykurtic, illustration by Gosset in Biometrika (Student,
1927, p 160). In the notation of the time, $2 = kurtosis/(variance squared).

appendix to this book offers a few more facts about central moments, and derives
the correction factors.

But in all cases, the population vs sample detail is relevant only for small n. Efron
& Tibshirani (1993, p 43) state that estimating variance via n is “just as good”
as estimating it via n — 1, so there is highly-esteemed precedent for ignoring this
detail. For the higher moments, the sample and population estimates converge even
more quickly.

Coding it  Given a vector, Apophenia provides functions to calculate most of the
above, e.g.:

apop_data xset = gather_your_data_here();
apop_data xcorr = apop_data_correlation(set);
APOP_COL(set, 0, v1);

APOP_COL(set, 1, v2);

double meanl = apop_vector_mean(vl);
double varl = apop_vector_var(vl);

double skew1 = apop_vector_skew(v1);
double kurtl = apop_vector_kurtosis(v1);
double cov = apop_vector_cov(vl, v2);
double cor = apop_vector_correlation(vl, v2);
apop_data_show (apop_data_summarize(set));

The last item in the code, apop_matrix_summarize, produces a table of some
summary statistics for every column of the data set.
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Your data may be aggregated so that one line of data represents multiple observa-
tions. For example, sampling efficiency can be improved by sampling subpopula-
tions differently depending upon their expected variance (Sirndal et al., 1992). For
this and other reasons, data from statistical agencies often includes weightings.

This is not the place to go into details about statistically sound means of weighting
data, but if you have a separate vector with weights, you can use apop_vector_-
weighted_mean, apop_vector_weighted_var, et cetera, to use those weights.
Or, if your apop_data set’s weights vector is filled, apop_data_summarize will
make use of it.

* Write a query that pulls the number of males per 100 females and
the population density from the Census data (data-census.db). The
query will

— join together the geography and demos tables by county num-
ber, and

— exclude states and the national total, and

— return a two-column table.

* Write a function void summarize_paired_data(char #*q) that

takes in a query that produces a two-column table, and outputs some

Q of the above summary information about both columns, including the
4 mean, variance, and correlation coefficients.

* Write amain() that sends your query to the above function, and run
the program. Is population density positively or negatively correlated
to males per female?

* Write another query that pulls the ratio of (median income for full-
time workers, female)/(median income for full-time workers, male)
and the population density.

* Addaline tomain () to send that query to your summarizing function
as well. How is the new pair of variables correlated?

Quantiles  The mean and variance can be misleading for skewed data. The first
option for describing a data set whose distribution is likely ab-Normal is
to plot a histogram of the data, as per page 172.

A numeric option is to print the quartiles, quintiles, or deciles of the data. For
quartiles, sort the data, and then display the values of the data points 0%, 25%,
50%, 75%, and 100% of the way through the set. The 0% value is the minimum of
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the data set, the 100% value is the maximum, and the 50% value is probably the
median (see below). For quintiles, print the values of data points 0%, 20%, 40%,
60%, 80%, and 100% of the way through the set, and for deciles, print the values
every ten percent.

Sorting your data is simple. If you have an apop_data set and a gsl_vector, then

apop_data_sort(my_data, 2, ’d’);
gsl_vector_sort(my_vector);

would sort my_data in place so that column 2 is in ‘d’escending order, and sort the
vector in place to ascending order, so gsl_vector_get (my_vector, 0) is the
minimum of the data, gsl_vector_get (my_vector, my_vector->size) is the
maximum, and gsl_vector_get(my_vector, my_vector->size/2) is about
the median.

Alternatively, the function apop_vector_percentiles takes in a gsl_vector
and returns the percentiles—the value of the data point 0%, 1%, ..., 99%, 100%
of the way through the data. It takes in two arguments: the data vector, and a
character describing the rounding method—’u’ for rounding up, ’d’ for rounding
down, and ’a’ for averaging. Since the number of elements in a data set is rarely
divisible by a hundred and one, the position of most percentile points likely falls
between two data points. For example, if the data set has 107 points, then the tenth
data point is 9.47% through the data set, and the eleventh data point is 10.38%
through the set, so which is the tenth percentile? If you specify >u’, then it is the
eleventh data point; if you specify *d’ then it is the tenth data point, and if you
specify ’a’, then it is the simple average of the two.

The standard definition of the median is that it is the middle value of the data point
if the data set has an odd number of elements, and it is the average of the two data
points closest to the middle if the data set has an even number of elements. Thus,
here is a function to find the median of a data set. It finds the percentiles using the
averaging rule for interpolation, marks down the 50th percentile, then cleans up
and returns that value.

double find_median(gsl_vector v){
double pctiles = apop_vector_percentiles(v, ’a’);
double out = pctiles[50];
free(pctiles);
return out;
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Write a function with header double show_quantiles(gsl_vector
*v, char rounding_method, int divisions) that passes v and
rounding_method to apop_vector_percentiles, and then prints a ta-
ble of selected quantiles to the screen. For example, if divisions==4,
print quartiles, if divisions==5, print quintiles, if divisions==10, print
deciles, et cetera.

On page 88 you tabulated GDP per capita for the countries of the world.
Use your function to print the deciles for country incomes from data-wb.

The trimean is % the sum of the first quartile, third quartile, and two times
the median (Tukey, 1977, p 46). It uses more information about the distri-
bution than the median alone, but is still robust to extreme values (unlike
the mean).

Write a function that takes in a vector of data points, applies apop_-
vector_percentiles internally, and returns the trimean. How does the
trimean of GDP per capita compare to the mean and median, and why?

See also page 319, which compares percentiles of the data to percentiles of an
assumed distribution to test whether the data were drawn from the distribution.

» The most basic means of describing data is via its moments. The basic
moments should be produced and skimmed for any data set; in simple
cases, there is no need to go further.

» The variance can often be decomposed into smaller parts, thus reveal-
ing more information about how a data set’s variation arose.

» The mean and variance are well known, but there is also information
in higher moments—the skew and kurtosis.

» It is also important to know how variables interrelate, which can be
summarized using the correlation matrix.

» There is a one-line function to produce each of these pieces of in-
formation. Notably, apop_data_summarize produces a summary of
each column of a data set.

» You can get a more detailed numerical description of a data set’s dis-
tribution using quartiles or quintiles; to do so, use apop_vector_-
percentiles.
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7.2 SAMPLE DISTRIBUTIONS  Here are some distributions that an observed
variable may take on. They are not just here so
you can memorize them before the next statistics test. Each has a story attached,
which is directly useful for modeling. For example, if you think that a variable is
the outcome of n independent, binary events, then the variable should be modeled
as a Binomial distribution, and once you estimate the parameter to the distribution,
you will have a full model of that variable, that you can even test if so inclined.
Table 7.4 presents a table of what story each distribution is telling. After the catalog

of models, I will give a few examples of such modeling.

The distribution = The story

Bernoulli A single success/failure draw, fixed p.

Binomial What are the odds of getting = successes from n
Bernoulli draws with fixed p?

Hypergeometric What are the odds of getting = successes from n
Bernoulli draws, where p is initially fixed, but draw-
ing is without replacement?

Normal/Gaussian ~ Binomial as n — oo; if i = > 7" | @i;/n, then pj ~
Normal.

Lognormal If pj =[], xi;, then pj ~ Lognormal.

Multinomial n draws from m possibilities with probabilities p1,

..,pm, z;’ilpl e 1.

Multivariate Multinomial as n — oo.

Normal

Negative binomial

How many Bernoulli draws until n successes?

Poisson Given A events per period, how many events in ¢ pe-
riods?

Gamma The ‘Negative Poisson’: given a Poisson setup, how
long until n events?

Exponential A proportion A of the remaining stock leaves each
period; how much is left at time ¢?

Beta A versatile way to describe the odds that p takes on
any value € (0,1).

Uniform No information but the upper and lower bounds.

Table 7.4 Every probability distribution tells a story.

Common distributions of statistical parameters (as opposed to natural populations)
are discussed in Section 9.2.
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Bernoulli and Poisson events  The core of the system is an event, which some-

times happens and sometimes does not. Some peo-

ple have a disease, some do not; some days it rains, some days it does not. Events

add up to more-or-less continuous quantities: some cities see a 22% chance of rain

on a given day, and some see a 23.2% chance; some populations have high rates of
disease and some do not.

From there, there are variants: instead of asking how many successes we will see
in n trials (the Binomial and Poisson distributions), we can ask how many trials we
can expect to make to get n successes (the Negative binomial and Gamma distri-
butions). We can look at sampling without replacement (Hypergeometric). We can
look at the case where the number of trials goes to infinity (Normal) or aggregate
trials and take their product (Lognormal). In short, a surprisingly wide range of
situations can be described from the simple concept of binary events aggregated in
various ways.

The snowflake problem  For a controlled study (typical of physical sciences), the
claim of a fixed probability (p or \) is often plausible, but
for most social science experiments, where each observation is an individual or a
very different geographic region, the assumption that all observations are identical

is often unacceptable—every snowflake is unique.

It may seem like the fixed-p and fixed-\ models below are too simple to be appli-
cable to many situations—and frankly, they often are. However, they can be used
as building blocks to produce more descriptive models. Section 8.2.1 presents a
set of linear regression models, which handle the snowflake problem well, but
throw out the probability framework presented in this chapter. But we can solve
the snowflake problem and still make use of simple probability models by em-
bedding a linear model inside a distribution: let p; differ among each element 4,
and estimate p; using a linear combination of element 7’s characteristics. Page 288
covers examples of the many possibilities provided by models-within-models.

Statistics and their estimators

* The catalog in this section includes the three most typical items one would want
from a distribution: a random number generator (RNG) that would produce data
with the given distribution, a probability density function (PDF), and a cumulative
density function (CDF).

TThis is for the case when the independent variable is continuous. When it is discrete, the PDF is named a
probability mass function (PMF) and the CDF a cumulative mass function (CMF). For every result or statement
about PDFs, there is an analogous result about PMFs; for every result or statement about CDFs, there is an
analogous result about CMFs.
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» The catalog also includes the expected value and variance of these distributions,
which are distinct from the means and variances to this point in a key manner:
given a data set, the mean is a statistic—a function of data of the form f(x). Mean-
while, given a model, the mean and variance of a draw are functions of the param-
eters, e.g., given a Binomial distribution with parameters n and p, E(x|n, p) = np.
Of course, we rarely know all the parameters, so we are left with estimating them
from data, but our estimate of p, p is once again a function of the data set on hand.
We will return to this back-and-forth between estimates from data and estimates
from the model after the catalog of models.

* The full details of RNG use will be discussed in Chapter 11, but the RNG functions
are included in the catalog here for easy reference; each requires a pointer to a
gsl_rng, which will be named r.

THE BERNOULLI FAMILY The first set of distributions are built around a narrative
of drawing from a pool of events with a fixed probabil-
ity. The most commonly-used example is flipping a coin, which is a single event
that comes out heads with probability p = 1/2. But other examples abound: draw
one recipient from a sales pitch out of a list of such people and check whether he
purchased or did not purchase, or pull a single citizen from a population and see if
she was the victim of a crime. For one event, a draw can take values of only zero

or one; this is known as a Bernoulli draw.

Bernoulli The Bernoulli distribution represents the result of one Bernoulli draw,
meaning that P(z = 1|p) = p, P(z = 0|p) = 1 —p, and P(z = anything
else [p) = 0. Notice that E(x|p) = p, even though z can be only zero or one.

P(z,p)=p"(1 —p)" ),z € {0,1}
=gsl_ran bernoulli_pdf(x,p)
E(zlp)=p
var(z|p) =p(1 — p)
RNG : gsl_ran bernoulli(r,p)

Binomial Now take n Bernoulli draws, so we can observe between 0 and n events.
The output is now a count: how many people dunned by a telemarketer

agree to purchase the product, or how many crime victims there are among a fixed
population. The probability of observing exactly k events is p(k) ~ Binomial(n, p).

Counting x successes out of n trials is less than trivial. For example, there are six
ways by which two successes could occur over four trials: (0,0,1,1), (0,1,0,1),
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Figure 7.5 Left: The Binomial distribution with n = 100 and various values of p. Right: the Bi-
nomial distribution with p = 0.4 and various values of n. As n grows, the distribution
approaches an N (np, v/np(1 — p)).

(0,1,1,0), (1,1,0,0), (1,0,0,1), or (1,0, 1,0), and the model underlying the Bi-
nomial model treats them all equally.

The form of the distribution therefore borrows a counting technique from combi-
natorics. The notation (Z) indicates n choose x, the number of unordered sets of
x elements that can be pulled from n objects. The equation is

()= sy

and the function is gs1_sf_choose(n,x) (in the GSL’s Special Functions sec-
tion). For example, we could get exactly thirty successful trials out of a hundred
in (1) ways (~ 2.94e25).

Combinatorics also dictates the shape of the curve. There is only one way each to
list four zeros or four ones—(0,0,0,0) and (1,1, 1,1)—and there are four ways
to list one one—(0,0,0, 1), (0,0,1,0),...—and symmetrically for one zero. In
order, the counts for zero through four ones are 1, 4, 6, 4, and 1. This simple
counting scheme already produces something of a bell curve. Returning to coin-
flipping, if p = 1/2 and the coin is flipped 100 times (n = 100), p(50 heads) is
relatively high, while p(0 heads) or p(100 heads) is almost nil.

In fact, as n — oo, the probability distribution approaches the familiar Normal
distribution with mean np and variance np(1 — p), as in Figure 7.5. Assuming
that every telemarketer’s probability of selling is equal, we expect that a plot of
many months’ telemarketer results will look like a Normal distribution, with many
telemarketers successfully selling to np victims, and others doing exceptionally
well or poorly. The assumption that every telemarketer is equally effective can
even be tested, by checking for digression from the Normal distribution.
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P(x,p,n)= <n> P (1 —p)tn®
x
=gsl_ran binomial_pdf(x,p,n)
E(x|n,p)=np (7.2.1)
var(z|n,p) =np(l — p) (7.2.2)
RNG : gsl_ran binomial(r,p,n)

« If X ~ Bernoulli(p), then for the sum of n independent draws, > ;| X; ~
Binomial(n, p).
* As n — oo, Binomial(n, p) — Poisson(np) or N'(np, /np(1 — p)).

Since n is known and E'(x) and var(x) can be calculated from the data, Equations
7.2.1 and 7.2.2 are an oversolved system of two variables for one unknown, p.
Thus, you can test for excess variance, which indicates that there are interactions
that falsify that the observations were iid (independent and identically distributed)
Bernoulli events.

A variant: one p fromn draws  The statistic of interest often differs from that cal-
culated in this catalog, but it is easy to transform

the information here. Say that we multiply the elements of a set = by k. Then the
mean goes from being p, = >, ;/ntobeing iy = >, (kz;)/n =k, z;/n =
ki, The variance goes from being 02 = . (z; — pg)?/nto oz, = > (kx; —

kpz)?/n = k? Yoz — pz)?/n = /<;2ai.

For example, we are often interested in estimating p from data with a Binomial-
type story. Since E(z) = np under a Binomial model, one could estimate p as
E(z/n). As for the variance, let & in the last paragraph be 1/n; then the variance
of x/n is the original variance (var(z) = np(1 — p)) times 1/n2, which gives
var(p) = p(1 - p)/n.

Hypergeometric ~ Say that we have a pool of N elements, initially consisting of
s successes and f = N — s failures. So N = s + f, and the
Bernoulli probability for the entire pool is p = s/N. What are the odds that we
get x successes from n draws without replacement? In this case, the probability of
a success changes as the draws are made. The counting is more difficult, resulting

in a somewhat more involved equation.
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(2) (L)
()
=gsl_ran hypergeometric_pdf(x,s,f,n)
B(aln.s, ) ="
(&) = F)N —n)
(N —1)

RNG : gsl_ran_hypergeometric(r,s,f,n)

P(z,s, f,n)=

n
var(aln, s, f) =

* As N — oo, drawing with and without replacement become equivalent, so the
Hypergeometric distribution approaches the Binomial.

Multinomial ~ The Binomial distribution was based on having a series of events that

could take on only two states: success/failure, sick/well, heads/tails,

et cetera. But what if there are several possible events, like left/right/center, or

Africa/Eurasia/Australia/Americas? The Multinomial distribution extends the Bi-
nomial distribution for such cases.

The Binomial case could be expressed with one parameter, p, which indicated
success with probability p and failure with probability 1 — p. The Multinomial

case requires k variables, p1, ..., pk, such that Zle p; = 1.
P B n! . o
(x,p,n) = m]% TPy
=gsl_ran multinomial pdf(k,p,n)
71 1
€2 b2
E n,pl=n
Tn | Pn,
(p1(1—p1)  —pwp2 ... —Dipk
—p1p2 p2(l—p2) ...  —papk
var(x|n,p) =n . . .
| —Dep1 —prp2 - pe(l—pr)

RNG : gsl_ran_multinomial(r,draws,k,p,out)

* There are two changes from the norm for the GSL’s functions. First, p and n are
arrays of doubles of size k. If 3.5_, p[i] # 1, then the system normalizes the
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probabilities to make this the case. Also, most RNGs draw one number at a time,
but this one draws K elements at a time, which will be put into the bins of the out
array.

* You can verify that when k& = 2, this is the Binomial distribution.

Normal  You know and love the bell curve, aka the Gaussian distribution. It is pic-

tured for a few values of o2 in Figure 7.6.

As Section 9.1 will explain in detail, any set of means generated via iid draws will
have a Normal distribution. That is,

Draw K items from the population (which can have any nondegenerate distribu-
tion), x1, T2, ..., k. The Normal approximation works best when K is large.

Write down the mean of those items, Z;.

Repeat the first two steps n times, producing a set x = {Z1, To, ..., Ty }.

Then x has a Normal distribution.

Alternatively, the Binomial distribution already produced something of a bell curve
with n = 4 above; as n — oo, the Binomial distribution approaches a Normal
distribution.

riem o (3527

=gsl_ran_gaussian pdf(x,sigma)+ mu

E(z|p,0)=p

var(z|y, o) = o*

x
/ N (y|p, o)dy =gsl_cdf_gaussian_P(x — mu,sigma)

—00
o0
/ N (y|p, 0)dy = gsl_cdf_gaussian_Q(x — mu, sigma)
x

RNG : gsl_ran_gaussian(r,sigma)+ mu

o If X ~ N(p1,01) and Y ~ N (ug,02) then X +Y ~ N(pu1 + pz2, \/0? + 03).
* Because the Normal is symmetric, X — Y ~ N (1 — po, /07 + 03).
* Section 9.1 (p 297) discusses the Central Limit Theorem in greater detail.
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P(x,p,0)

Figure 7.6 The Normal distribution, with p = 0.

Multivariate Normal  Just as the Normal distribution is the extension of the Bino-

mial, the Multivariate Normal is the extension of the Multi-

nomial. Say that we have a data set X that includes a thousand observations and

seven variables (so X is a 1000x7 matrix). Let its mean be y (a vector of length

seven) and the covariance among the variables be 3 (a seven by seven matrix).
Then the Multivariate Normal distribution that you could fit to this data is

P(X, 3 = &P (33X —p)/ES' (X - p)
i (2m)" det(X)
EX|p,Z)=p
var(X|p, ) =X

* When X has only one column and 3 = [02], this reduces to the univariate Normal
distribution.

Lognormal  The Normal distribution is apropos when the items in a sample are the
mean of a set of draws from a population, T; = (s1 +s2+ - - -+ si) /k.

But what if a data point is the product of a series of iid samples, £; = s1-S9-- - - 5§ ?
Then the log of Z; is In(Z;) = In(s1) + In(s2) + - - - + In(sg), so the log is a sum
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Figure 7.7 The Lognormal distribution.

of independent elements (i.e., n times a mean). Very broadly, when a point in the
data set is produced by summing iid draws, it will be Normally distributed; when
a point in the data set is produced by taking the product of iid draws, its log will be
Normally distributed—i.e., it will have a lognormal distribution. The next section
will present an example. Figure 7.7 shows some Lognormal distributions.

A notational warning: in the typical means of expressing the lognormal distribu-
tion, 1 and o refer to the mean of the Normal distribution that you would get if
you replaced every element x in your data set with e®, thus producing a standard
Normal distribution. Be careful not to confuse this with the mean and variance of
the data you actually have.

exp (—(nz — 1)/ (20%)

ToV 2T
=ran_lognormal_pdf(x,mu, sigma)

E(z|p,0) :e<“+§)

var(z|p, o) = (7 — 1)e2#+%)

RNG : ran_lognormal(rng,mu, sigma)

p(x, p,0)=
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Negative binomial ~ Say that we have a sequence of Bernoulli draws. How many

failures will we see before we see n successes? If p percent of

cars are illegally parked, and a meter reader hopes to write n parking tickets, the
Negative binomial tells her the odds that she will be able to stop with n 4 x cars.

The form is based on the Gamma function,

F(z):/ ¥ e % dx
0

=gsl_sf_gamma(z).

You can easily verify that I'(z + 1) = 2I'(2). Also, I'(1) = 1,I'(2) = 1,I'(3) = 2,
I'(4) = 6, and generally, I'(z) = (z — 1)! for positive integers. Thus, if n and
x are integers, formulas based on the Gamma function reduce to more familiar
factorial-based counting formulas.

IF'n+x)
P =———"p"(1—p)*
=gsl_ran negative_binomial pdf(x,p,n)
n(l—p
B(aln,p) = ")
p
1—
var(aln, p) = L)
p
RNG : gsl_ran_negative_binomial(rng,p,n)

RATES A Poisson process is very much like a Bernoulli draw, but the unit of mea-

surement is continuous—typically a measure of time or space. It makes sense

to have half of an hour, but not half of a coin flip, so the stories above based on

Bernoulli draws are modified slightly to allow for a rate of A events per hour to be
applied to half an hour or a week.

Baltimore, Maryland, sees about 110 days of precipitation per year, somewhat
consistently spaced among the months. But for how many days will it rain or snow
in a single week? The Poisson distribution answers this question. We can also
do a count of weeks: how often does it rain once in a week, twice in a week, et
cetera? The Exponential distribution answers this question. Turning it around, if
we want a week with three rainfalls, how long would we have to wait? The Gamma
distribution answers this question.
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Figure 7.8 The Poisson distribution.

Poisson  Say that independent events (rainy day, landmine, bad data) occur at the
mean rate of A events per span (of time, space, et cetera). What is the
probability that there will be x events in a single span?

We are assuming that events occur at a sufficiently even rate that the same rate
applies to different time periods: if the rate per day is A;, then the rate per week is
7A1, and the rate per hour is \; /24. See Figure 7.8.

P(x,\) = c ;\')\:c
=gsl_ran_poisson_pdf(x,lambda)
E(z|A) =X\
var(z|\) =\
RNG : gsl_ran_poisson(r,lambda)

* As n — oo, Binomial(n, p) —Poisson(np).

o If X ~ Poisson(A1), Y ~ Poisson(Az2), and X and Y are independent, then
(X +Y) ~ Poisson(A1 + Az2).

* As X\ — 0o, Poisson(\) — N(A, V).
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* Calculate the Binomial-distributed probability of three rainfalls in
seven days, given the probability of rain in one day of p = (110/365).

Q” * Calculate the Poisson-distributed probability of three rainfalls in
seven days, given a one-day A\ = (110/365).

Gamma distribution  The Gamma distribution is so-named because it relies heavily

on the Gamma function, first introduced on page 244. Along

with the Beta distribution below, this naming scheme is one of the great notational
tragedies of mathematics.

A better name in the statistical context would be ‘Negative Poisson,” because it
relates to the Poisson distribution in the same way the Negative binomial relates to
the Binomial. If the timing of events follows a Poisson distribution, meaning that
events come by at the rate of A per period, then this distribution tells us how long
we would have to wait until the nth event occurs.

The form of the Gamma distribution, shown for some parameter values in Fig-
ure 7.9, is typically expressed in terms of a shape parameter § = 1/), where A
is the Poisson parameter. Here is the summary for the function in terms of both
parameters:

1
P(z,n,0)= F(n)enm”_le_x/g,:n € [0, 00)

=gsl_ran_gamma_pdf(x,n,theta)

1
P(z,n,\)=————a"" e z € [0,00) (7.2.3)
L(n)(3)"

E(z|n,0 or \) =nf =n/\
var(z|n, 0 or \) = k62 = k/\?

/ G(y|n,0)dy = gs1l_cdf_gamma_P(x, theta)

/ G(y|n,0)dy = gs1l_cdf_gamma_Q(n, theta)

RNG : gsl_ran_gamma(r,n,theta)
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Figure 7.9 The Gamma distribution.

* With n = df/2 and 6 = 2, the Gamma distribution becomes a ng distribution
(introduced on page 301).

¢ With n = 1, the Gamma distribution becomes an Exponential(\) distribution.

Exponential distribution ~ The Gamma distribution found the time until n events
occur, but consider the time until the first event occurs.
ra) =1, 1" = 1 for all positive A, and z° = 1 for all positive x, so at n =

1, Equation 7.2.3 defining the PDF of the Gamma distribution reduces to simply
-z
e ",

If we had a population of items, fot e~**dz percent would have had a first event
between time zero and time ¢. If the event causes the item to leave the population,
then one minus this percent are still in the population at time ¢. The form e® is very
easy to integrate, and doing so gives that the percent left at time t = e~ /\.

So we now have a story of a population where members leave via a Poisson pro-
cess. Common examples include the stock of unemployed workers as some find
a job every period, radioactive particles emanating from a block, or drug dosage
remaining in a person’s blood stream. Figure 7.10 shows a few examples of the
Exponential distribution.
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Figure 7.10 The Exponential distribution.

Since the exponent is — , this is sometimes called the Negative exponential distri-
bution.

1 —x
P(z,\) = XGT
=gsl_ran_exponential_pdf(x,lambda)
E(z|\) =X
var(z|\) = \2

x
/ Exp(\)dy = gsl_cdf_exponential P(x,lambda)

—00
o
/ Exp(\)dy = gsl_cdf_exponential Q(x,lambda)
x

RNG : gsl_ran_exponential(r,lambda)
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Figure 7.11 The Beta distribution.

DESCRIPTION Here are a few more distributions that are frequently used in model-
ing to describe the shape of a random variable.

Beta distribution  Just as the Gamma distribution is named for the Gamma function,

the Beta distribution is named after the Beta function—whose

parameters are typically notated as « and (3. This book will spell out Beta(-) for
the Beta function and use B(-, -) for the Beta distribution.

The Beta function can be described via the following forms:

1
Beta(a, 3) :/ 21 — 2)B Vg
0

_ D{e)I'(5)
- T(a+pB)
=gsl_sf_beta(alpha,beta).

The Beta distribution is a flexible way to describe data inside the range [0, 1].
Figure 7.11 shows how different parameterizations could lead to a left-leaning,
right-leaning, concave, or convex curve; see page 358 for more.
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P(z,a, 8) =Beta(a, 8)z* ' (1 — z)° !
=gsl_ran beta_pdf(x,alpha,beta)

Blalo, )= =

af
(a+B)2(a+5+1)

X
/ B(yla, B)dy =gsl_cdf_beta_P(x,alpha,beta)

—00

var(z|a, 8) =

o0
/ B(yla, B)dy =gsl_cdf_beta_Q(x,alpha,beta)
€T

RNG : gsl_ran_beta(r,alpha,beta)

If a < 1and B < 1, then the distribution is bimodal, with peaks at zero and one.
If « > 1 and B > 1, then the distribution is unimodal.

e As « rises, the distribution leans toward one; as 3 rises, the distribution leans
toward zero; if & = (3, then the distribution is symmetric.

* If a = = 1, then this is the Uniform|[0, 1] distribution.

x The Beta distribution and order statistics  The first order statistic of a set of
numbers x is the smallest number
in the set; the second is the next-to-smallest, up to the largest order statistic, which

is max(x).

Assume that the o + 3 — 1 elements of x are drawn from a Uniform|0, 1] distribu-
tion. Then the ath order statistic has a B(«, (3) distribution.

* Write a function that takes in a gsl_rng and two integers a and b,
produces a list of a+b-1 random numbers in [0, 1], sorts them, and
returns the ath order statistic.

* Write a function to call that function 10,000 times and plot the PDF of

the returned data (using apop_plot_histogram). It helps to precede
Q the plot output to Gnuplot with set xrange [0:1] to keep the range
7.8 consistent.

* Write a main that produces an animation of the PDFs of the first
through 100th order statistic for a set of 100 numbers.

* Replace the call to the draw-and-sort function with a draw from the
B(a, b) distribution, and re-animate the results.
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Uniform distribution ~ What discussion of distributions would be complete without
mention of the Uniform? It represents a belief that any value
within [« 3] is equally possible.

_J7s welg
P(ac,a,ﬂ)_{ 0 z<a,xz>p
=gsl_ran flat_pdf(x,alpha,beta)
E(zla, B) = b ; a
)2
var(afo, )= L0
" 0 T <«
| utiemiy={ 52 el
- 1 x> [

=gsl_cdf_flat_P(x,alpha,beta)
o0
/ U(y|a, B)dy = gsl_cdf_flat_Q(x,alpha,beta)
€T

RNG, general : gsl_ran _flat(r,alpha,beta)
RNG,a=0,6=1: gsl_rng uniform(r)

» Probability theorists through the ages have developed models that in-
dicate that if a process follows certain guidelines, the data will have a
predictable form.

» A single draw from a binary event with fixed probability has a
Bernoulli distribution; from this, a wealth of other distributions can
be derived.

» An event which occurs with frequency A per period (or A per volume,
z et cetera) is known as a Poisson process; a wealth of distributions can
be derived for such a process.

» If 7 is the mean of a set of independent, identically distributed draws
from any nondegenerate distribution, then the distribution of T ap-
proaches a Normal distribution. This is the Central Limit Theorem.

» The Beta distribution is useful for modeling a variety of variables
that are restricted to [0, 1]. It can be unimodal, bimodal, lean in either
direction, or can simply match the Uniform distribution.
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7.3 USING THE SAMPLE DISTRIBUTIONS  Here are some examples of how
you could use the distributions
described above to practical benefit.

LOOKING UP FIGURES If I have fifty draws from a Bernoulli event with probability
.25, what is the likelihood that I will have more than twenty
successes?

Statistics textbooks used to include an appendix listing tables of common distribu-
tions, but those tables are effectively obsolete, and more modern textbooks refer
the reader to the appropriate function in a stats package. For those who long for
the days of grand tables, the code supplement includes normaltable.c, code for
producing a neatly formatted table of CDFs for a set of Normal distributions (the
p-value often reported with hypothesis tests is one minus the listed value).

The code is not printed here because it is entirely boring, but the tables it produces
provide another nice way to get a feel for the distributions.

Alternatively, Apophenia’s command-line program apop_lookup will look up a
quick number for you.

GENERATING DATA FROM A DISTRIBUTION Each distribution neatly summarizes
an oft-modeled story, and so each
can be used as a capsule simulation of a process, either by itself or as a build-

ing block for a larger simulation.

Listing 7.12 gives a quick initial example. It is based on work originated by Gibrat
(1931) and extended by many others, including Axtell (2006), regarding Zipf’s
law, that the distribution of the sizes of cities, firms, or other such agglomera-
tions tends toward an Exponential-type form. In the model here, this comes about
because agents’ growth rates are assumed to be the mean of a set of iid random
shocks, and so are Normally distributed.

* First, the program produces a set of agents with one characteristic: size, stored in a
gsl_vector. The initialize function draws agent sizes from a Uniform[0, 100]
distribution. To do this, it requires a gs1_rng, which main allocates using apop_-
rng_alloc and passes to initialize. See Chapter 11 for more on using random
number generators.

* Each period, the firms grow by a Normally distributed rate (via the grow function).
That s, the grow function randomly draws g from a gs1_rng_gaussian, and then
reassigns the firm size to size < size * exp(g). The most likely growth rate is
therefore exp(0) = 1. When g < 0, exp(g) < 1; and when g > 0, exp(g) > 1.
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#include <apop.h>

int agentct = 5000;

int periods = 50;

int binct = 30;

double pauselength = 0.6;
gsl_rng =r;

void initialize(double xsetme){
xsetme = gsl_rng_uniform(r)*100;

}

void grow(double :val){
=val = exp(gsl_ran_gaussian(r,0.1));

}

double estimate(gsl_vector xagentlist){
return apop_vector_mean(agentlist);

}

int main(){
gsl_vector xagentlist = gsl_vector_alloc(agentct);

r = apop_rng_alloc(39);

apop_vector_apply(agentlist, initialize);

for (int i=0; i< periods; i++){
apop_plot_histogram(agentlist, binct, NULL);
printf("pause %g\n", pauselength);
apop_vector_apply (agentlist, grow);

}

fprintf(stderr, "the mean: %g\n", estimate(agentlist));

Listing 7.12 A model of Normally distributed growth. Online source: normalgrowth. c.

Also, exp(g) * exp(—g) = 1, and by the symmetry of the Normal distribution, g
and —g have equal likelihood, so it is easy for an agent to find good luck in period
one countered by comparable bad luck in period two, leaving it near where it had
started.

The output is a set of Gnuplot commands, so use ./normalgrowth | gnuplot.
With a pause between each histogram, the output becomes an animation, showing
a quick transition from a Uniform distribution to a steep Lognormal distribution,
where most agents are fast approaching zero size, but a handful have size approach-
ing 1,000.3

8Here, the z-axis is the firm size, and the y-axis is the number of firms. Typically, Zipf-type distributions are
displayed somewhat differently: the x-axis is the rank of the firm, 1st, 2nd, 3rd, et cetera, and the y-axis is the
size of the so-ranked firm. Converting to this form is left as an exercise to the reader. (Hint: use gsl_vector_-
sort.)
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» The last step is a model estimation, to which we will return in a few pages. Its
output is printed to stderr, aka the screen, so that the pipe to Gnuplot is not
disturbed.

SIMULATION  Fein et al. (1988) found that their depressive patients responded well
to a combination of Lithium and a monoamine oxidase inhibitor (MAOI).
But both types of drug require careful monitoring: Lithium overdoses are common
and potentially damaging, while the combination of MAOIs and chocolate can be
fatal.

#include <apop.h>

double find_lambda(double half_life){
double lambda = —half_life/log(1/2.);
return gsl_cdf_exponential_Q(1, lambda);

}

int main(){
double 1i = 0, maoi = 0;
int days = 10;
gsl_matrix *d = gsl_matrix_alloc(days=24,4);
double hourly_decay1 = find_lambda(20.); /hours; lithium carbonate
double hourly_decay?2 = find_lambda(11.); /hours; phenelzine
for (size_t i=0; i < days=*24; i ++){
li %= hourly_decayl;
maoi *= hourly_decay2;
if 1 % 24 ==0)
li+= 600;
if ((i+12) % 24 ==0)
maoi+= 45;
APOP_MATRIX_ROW(d, i, onehour);
apop_vector_fill(onehour, i/24., 1i/10., maoi, maoi/lix100.);
}
printf("plot *maoi.out’ using 1:2 with lines title ’Li/10’, \
’maoi.out’ using 1:3 with lines title " MAOI’, \
’maoi.out’ using 1:4 with lines title "M AOL/Li, pct\n");
remove("maoi.out");
apop_matrix_print(d, "maoi.out");

}

Listing 7.13 A simulation of the blood stream of a person taking two drugs. Online source: maoi. c.

Listing 7.13 simulates a patient’s blood stream as she follows a regime of Lithium
carbonate (average half life: about 20 hours, with high variance) and an MAOI
named phenelzine (average half life: 11 hours). As per the story on page 247,
when the drug leaves the blood stream via a Poisson process, the amount of a drug
remaining in the blood is described by an Exponential distribution.
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Figure 7.14 The typical sawtooth pattern of decay and renewal.

* The first step is to convert from the half life commonly used by pharmacists to the
A parameter in the exponential distribution. The £ind_lambda function does this.

* Given A, gsl_cdf_exponential_Q(1, lambda) answers the question of what
percentage of a given initial level is remaining after one hour.

* The main simulation is a simple hourly for loop, that decrements the amount of
drug in the blood stream by the amount calculated above, then checks whether it
is time for our patient to take one of her meds, and then records the various levels
on her chart.

* The ungainly printf statement at the end plots the result. Gnuplot does not save
data, so it needs to reread the data file three times to plot the three columns.

Figure 7.14 shows the density in blood as our subject takes 600 mg of Lithium at
midnight every day, and 45 mg of MAOI at noon every day. For convenience in
scaling of the plot, the amount of Lithium in the blood stream is divided by ten. In
the later days, after the subject’s system has reached its dynamic equilibrium, she
takes in 600 mg of Li per day, and loses about 600 mg per day; similarly for the
45 mg of MAOI. The ratio of MAOI/Li jumps constantly over the range of 187%
to 824%.

@ Derive or verify that the find_lambda function correctly converts between
7.9 half life and the Exponential distribution’s A parameter.
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Let there be two stocks: employed and unemployed. Let the half-life of
employment (i.e., transition to unemployment) be 365 days, and the half-
life of unemployment (i.e., finding a job) be 3 weeks (21 days).

Qmo Modify the Lithium/MAOI program to model the situation. For each period,
calculate the loss from both the employment and the unemployment stocks,
and then transfer the appropriate number of people to the other stock. What
is the equilibrium unemployment rate?

FITTING EXISTING DATA The common goal throughout the book is to estimate the
parameters of the model with data, so given a data set,
how can we find the parameters for the various distributions above?

You can see above that almost every parameter can be solved—sometimes over-
solved—using the mean and variance. For example, Equations 7.2.1 and 7.2.2 (de-
scribing the parameters of a Binomial distribution) are a system of two equations
in two unknowns:

pw=np
a?=np(1 - p)
It is easy to calculate estimates of 1 and o from data, i and &, and we could plug

those estimates into the above system of equations to find the parameters of the
distribution. You can verify that for these two equations we would have

n= i
fi— 62

~2
p=1-2.
i

This is method of moments estimation (see, e.g., Greene (1990, pp 117f)). To
summarize the method, we write down the parameter estimates as functions of
the mean, variance, skew, and kurtosis, then we find estimates of those parame-
ters from the data, and use those parameter estimates to solve for the parameter
estimates of the model itself.

But problems easily crop up. For example, we can just count observations to find
the value of n for our data set, so given n, fi, and &2, our system of equations is now
two equations with only one unknown (p). The Poisson distribution had a similar
but simpler story, because its single parameter equals two different moments:

p=A
o? =\

So if our data set shows i = 1.2 and 62 = 1.4, which do we use for A2 Apophenia
doesn’t fret much about this issue and just uses i, because this is also the maximum
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likelihood estimator (MLE) of A (where MLE will be discussed fully in Chapter
10).

For the Uniform, the method of moments doesn’t work either: the expression (5 —
«) is oversolved with the two equations, but there is no way to solve for a or 3
alone. However, a few moments’ thought will show that the most likely value for
(a, B) given data x is simply (min(x), max(x)).

Most of the above distributions have an apop_model associated (apop_normal,
apop_gamma, apop_uniform, et cetera), and if you have a data set on hand, you
can quickly estimate the above parameters:

apop_data «d = your_data;

apop_model xnorm = apop_estimate(d, apop_normal);
apop_model xbeta = apop_estimate(d, apop_beta);
apop_model_show(norm);

apop_model_show (beta);

apop_model_show (apop_estimate(d, apop_gamma));

Listing 7.12 produces a data set that should be Zipf distributed. Add an
estimation in the estimate function to see how well it fits.

Better still, run a tournament. First, declare an array of several models, say
@7'11 the Lognormal, Zipf, Exponential, and Gamma. Write a for loop to esti-
mate each model with the data, and fill an array of confidence levels based
on log-likelihood tests. [Is such a tournament valid? See the notes on the
multiple testing problem on 316.]

The method of moments provides something of a preview of the working of the
various model-based estimations in the remainder of the book. It took in data, and
produced an estimate of the model parameters, or an estimate of a statistic using
the estimate of the model parameters that were produced using data.

As the reader may have noticed, all these interactions between data, model param-
eters, and statistics create many opportunities for confusion. Here are some notes
to bear in mind:

* The expected value, variance, and other such measures of a data set, when no
model is imposed, is a function of the data. [E.g., E/(x).]

* The expected value, variance, and other such measures of a model are functions of
the ideal parameters, not any one data set. [E.g., E(x|() is only a function of 3.]
* Our estimate of model parameters given a data set is a function of the given data

set (and perhaps any known parameters, if there are any on hand). For example,
the Normal parameter u is a part of the model specification, but the estimate of i,
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which we write as fi, is a function of the data. Any variable with a hat, like p, could
be notated as a function of the data, p(x).

* We will often have a statistic like F(x) that is a function of the data—in fact,
we define a statistic to be a function of data. But models often have data-free
analogues to these statistics. Given a probability distribution P(zx, 3), the expected
value E(f(x)|8) = [, f(z)P(z,3)dx, meaning that we integrate over all z,
and so E(f(x)|0) is a function of only (3. The model in which £ lives is almost
always taken as understood by context, and many authors take the parameters as
understood by context as well, leaving the expected value to be written as E(f(x)),
even though this expression is a function of (3, not x.

BAYESIAN UPDATING The definition of a conditional probability is based on the

statement P(A N B) = P(A|B)P(B); in English, the like-

lihood of A and B occurring at the same time equals the likelihood of A occurring

given that B did, times the likelihood that B occurs. The same could be said re-

versing A and B: P(AN B) = P(B|A)P(A). Equating the two complementary
forms and shunting over P(B) gives us the common form of Bayes’s rule:

P(B|A)P(A)

PAIB) = =5

Now to apply it. Say that we have a prior belief regarding a parameter, such as
that the distribution of the mean of a data set is ~ AN (0, 1); let this be Pri(3). We
gather a data set X, and can express the likelihood that we would have gathered
this data set given any haphazard value of 3, P(X|3). Let B be the entire range of
values that 3 could take on. We can then use Bayes’s rule to produce a posterior
distribution:

Post(B|X) = —P(Xf())l;’;‘z(ﬁ)

So on the right-hand side, we had a prior belief about 3’s value expressed as a
distribution, and a likelihood function P(X|{3) expressing the odds of observing
the data we observed given any one parameter. On the left-hand side, we have a
new distribution for 3, which takes into account the fact that we have observed
the data X. In short, this equation used the data to update our beliefs about the
distribution of 3 from Pri((3) to Post(3).

The numerator is relatively clear, and requires only local information, but we can
write P(X) in its full form—

_ P(X|B)Pri(B)
Post(B|X) = Jypes P(X|B)Pri(B)dB
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—to reveal that the denominator is actually global information, because calculating
it requires covering the entire range that 3 could take on. Local information is easy
and global information is hard (see pages 325 ff), so Bayesian updating is often
described via a form that just ignores the global part:

Post(B|X) < P(X|B)Pri(f).

That is, the posterior equals the amount on the right-hand side times a fixed amount
(the denominator above) that does not depend on any given value of 3. This is
already enough to compare ratios like Post(/31|X)/Post((2]|X), and given the
right conditions, such a ratio is already enough for running likelihood ratio tests
(as discussed in Chapter 10).

Computationally, there are two possibilities for moving forward given the problem
of determining the global scale of the distribution. First, there are a number of
conjugate distribution pairs that can be shown to produce an output model that
matches the prior in form but has updated parameters. In this case, the apop_-
update function simply returns the given model and its new parameters; see the
example below.

Chapter 11 will present a computationally-intensive method of producing a pos-
terior distribution when the analytic route is closed (i.e., Monte Carlo Maximum
Likelihood). But for now we can take apop_update as a black box that takes in
two models and outputs an updated conjugate form where possible, and an empiri-
cal distribution otherwise. We could then make draws from the output distribution,
plot it, use it as the prior to a new updating procedure when a new data set comes
in, et cetera.

An example: Beta © Binomial  For now, assume that the likelihood that someone

has a tattoo is constant for all individuals, regard-

less of age, gender, ...(we will drop this clearly false assumption in the section

on multilevel modeling, page 288). We would like to know the value of that over-

all likelihood. That is, the statistic of interest is p = (count of people who have
tattoos)/(total number of people in the sample).

Because we have weak knowledge of p, we should describe our beliefs about its
value using a distribution: p has small odds of being near zero or one, a reasonable
chance of being about 10%, and so on. The Beta distribution is a good way to de-
scribe the distribution, because it is positive only for inputs between zero and one.
Let B indicate the Beta distribution; then B(1,1) is a Uniform(0, 1) distribution,
which is a reasonably safe way to express a neutral prior belief about p. Alterna-
tively, setting Pri(p) to be B(2,2) will put more weight around p = 1/2 and less
at the extremes, and raising the second parameter a little more will bring the mode
of our beliefs about p below 1/2 [See Figure 7.11].
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Given p, the distribution of the expected count of tattooed individuals is Binomial.
For each individual, there is a p chance of having a tattoo—a simple Bernoulli
draw. The overall study makes n = 500 such draws, and thus fits the model un-
derlying the Binomial distribution perfectly. But we do not yet know p, so this
paragraph had to begin by taking p as given. That is, the Binomial distribution
describes P(data|p).

It so happens that the Beta and Binomial distributions are conjugate. This means
that, given that Pri(p) is a Beta distribution and P(data|p) is a Binomial distribu-
tion, the posterior Post(p|data) is a Beta distribution, just like the prior. Tables of
other such conjugate pairs are readily available online.

However, the parameters are updated to accommodate the new information. Let x
be the number of tattoos observed out of n subjects, and the prior distribution be
B(a, ). Then the posterior is a B(a + x, 3 + n — z) distribution. The discussion
of the prior offered possibilities like & = § = 1 or a = § = 2. But the survey has
500 subjects; the count of tattooed individuals alone dwarfs o = 2. Therefore, we
can approximate the posterior as simply B(z,n — x).

The catalog above listed the expected value of a Beta distribution as ﬁ With
a =z and # = n — =, this reduces simply to /n. That is, the expected posterior
value of p is the percentage of people in our sample who have tattoos (p). Bayesian

updating gave us a result exactly as we would expect.

The variance of a Beta distribution is
af
(a+pB)2(a+pB+1)

Again, with NV around 500, the 1 in the denominator basically disappears. Filling
ina=xand § =n — x, we get

p(1 —p)
—.

Again, this is what we would get from the Binomial distribution.

We call a B(«, (3) distribution with small o and (3 a weak prior, by which we mean
that a moderately-sized data set entirely dwarfs the beliefs we expressed in the
prior. So what is the point of the updating process? First, we could use a stronger
prior, like o = 200, 3 = 300, which would still have some effect on the posterior
distribution even after updating with the data set.

Second, the system provides a consistent mechanism for combining multiple data
sets. The posterior distribution that you have after accounting for a data set will
have a form appropriate for use as a prior distribution to be updated by the next
data set. Thus, Bayesian updating provides a natural mechanism for running metas-
tudies.
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Verify that apop_update using a Beta prior, a Binomial likelihood function,
and the tattoo data does indeed produce the estimated mean and variance as
the simple 2:/n estimate. Gather the data from the column tattoos. ’ego
Q”z has tattoos’, which is coded 1=yes, 2=no, and calculate 1 and o2 using
the formule in the above few paragraphs.

What results do you get when you assume a stronger prior, like (200, 800)
or (800, 200)?

7.4 NON-PARAMETRIC Say that we have a data set and would like to know

DESCRIPTION the distribution from which the data was drawn. To

this point, we assumed the form of the distribution

(Normal, Binomial, Poisson, et cetera) and then had only to estimate the parame-

ters of the distribution from data. But without assuming a simple parametric form,
how else could we describe the distribution from which the data was drawn?

The simplest answer would be a plain old histogram of the drawn data. This is
often sufficient. But especially for small data sets, the histogram has dissatisfactory
features. If we make four draws, and three have value 20 and one has value 22, does
this mean that 21 has probability zero, or we just didn’t have the luck of drawing a
21 this time?

Thus, a great deal of nonparametric modeling consists of finding ways to smooth
a histogram based on the claim that the actual distribution is not as lumpy as the
data.

The histogram  The histogram is the most assumption-free way to describe the like-
lihood distribution from which the data was drawn. Simply lay

down a row of bins, pile each data point into the appropriate bin, normalize the
bins to sum to one if so desired, and plot. Because the most common use of a his-
togram (after just plotting it) is using it to make random draws, the full discussion

of histogram production will appear in the chapter on random draws, on page 361.

The key free variable in a histogram is the bandwidth—the range over the x-axis
that goes into each data point. If the bandwidth is too small, then the histogram
will have many slices and generally be as spiky as the data itself. A too-large
bandwidth oversmooths—at an infinite bandwidth, the histogram would have only
one bar, which is not particularly informative. Formally, there is a bias-variance
trade-off between the two extremes, but most of us just try a few bandwidths until
we get something that looks nice. See Givens & Hoeting (2005, ch 11) for an
extensive discussion of the question in the context of data smoothing.
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Moving average  The simplest means of smoothing data is a moving average, re-
placing each data point with the mean of the adjacent b data points
(where b is the bandwidth). You could use this for histograms or for any other
series. For example, movingavg.c in the online code supplement plots the tem-
perature deviances as shown in data-climate.db, and a moving average that
replaces each data point with the mean deviation over a two-year window, based

on the apop_vector_moving_average function.

1.8 T T T T T T 3.5
16 | line1 —
6 sl
14
25
12+
1 27
0.8 7 15 ¢
06 i
1t
04 4
“l JV\M A/\A A 7 l
0 L L L 0 L L L L
-2000 0 2000 4000 6000 8000 10000 12000 -2000 0 2000 4000 6000 8000 10000 12000
8 12

line1 —

0 I I I I I I 0 I I I I I I
-2000 0 2000 4000 6000 8000 10000 12000 -2000 0 2000 4000 6000 8000 10000 12000

Figure 7.15 A series of density plots. As h rises, the kernel density smooths out and has fewer peaks.

Kernel smoothing  The kernel density estimate is based on this function:

n
f(th’ h) _ Zi:l N((t - XZ)/h),
n-h
where X1, X, ... X,, € R are the n data points observed, N (y) is a Normal(0, 1)
density function evaluated at 3, and h € R is the bandwidth. Thus, the overall
curve is the sum of a set of subcurves, each centered over a different data point.
Figure 7.15 shows the effect of raising h on the shape of a set of fitted curves.’
When £ is very small, the Normal distributions around each data point are sharp
spikes, so there is a mode at every data point. As h grows, the spikes spread out

and merge, until the sum of subdistributions produces a single bell curve. See page

9The data is the male viewership for 86 TV specials, from Chwe (2001).
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376 for more on how these plots were generated; see also Silverman (1985).

As usual, there is a simple form for code to produce a default kernel density from
a data set, and a more extensive form that allows more control. Try Listing 7.16,
which plots the histogram of precipitation figures and the kernel-density smoothed
version based on a A/(0,0.1) kernel. Also try o = 0.001, 0.01, and 0.2 to see the
progression from the data’s spikes to a smooth bell curve.

#include <apop.h>

int main(){
apop_db_open("data—climate.db");
apop_data =data = apop_query_to_data("select pcp from precip");
apop_model xh = apop_estimate(data, apop_histogram);
apop_histogram_normalize(h);
remove("out.h"); remove("out.k");
apop_histogram_print(h, "out.h");
apop_model xkernel = apop_model_set_parameters(apop_normal, 0., 0.1);
apop_model xk = apop_model_copy (apop_kernel_density);
Apop_settings_add_group(k, apop_kernel_density, NULL, h, kernel, NULL);
apop_histogram_print(k, "out.k");
printf("plot "out.h’ with lines title *data’, *out.k’ with lines title ’smoothed’\n");
}

Listing 7.16 A histogram before and after smoothing via kernel densities. Run via smoothing |
gnuplot. Online source: smoothing.c.

Plot the data-tv set using:
* a histogram, using 40 and 100 bins,

* a smoothed version of the 40-bin histogram, via a moving average of
Q bandwidth four,
7.13

¢ the 40-bin histogram smoothed via a Normal(z, 100.0) kernel density,

¢ the 40-bin histogram smoothed via a Uniform(xz — 500.0, = + 500.0)
kernel density.
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Our weakness forbids our considering the entire universe and makes us cut it up into
slices.

—Poincaré (1913, p 1386)

This chapter covers models that make sense of data with more dimensions than we
humans can visualize. The first approach, taken in Section 8.1 and known as prin-
cipal component analysis (PCA), is to find a two- or three-dimensional subspace
that best describes the fifty-dimensional data, and flatten the data down to those
few dimensions.

The second approach, in Section 8.2, provides still more structure. The model la-
bels one variable as the dependent variable, and claims that it is a linear combina-
tion of the other, independent, variables. This is the ordinary least squares (OLS)
model, which has endless variants. The remainder of the chapter looks at how
OLS can be applied by itself and in combination with the distributions in the prior
chapter.

One way to characterize the two projection approaches is that both aim to project
N-dimensional data onto the best subspace of significantly fewer than N dimen-
sions, but they have different definitions of best. The standard OLS regression
consists of finding the one-dimensional line that minimizes the sum of squared
distances between the data and that line, while PCA consists of finding the few
dimensions where the variance of the projection of the data onto those dimensions
is maximized.
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8.1 3 PRINCIPAL COMPONENT ANALYSIS PCA is closely related to factor

analysis, and in some fields is

known as spectral decomposition. The first phase (calculating the eigenvalues)

is sometimes called the singular value decomposition. It is a purely descriptive

method. The idea is that we want a few dimensions that will capture the most
variance possible—usually two, because we can plot two dimensions on paper.

After plotting the data, perhaps with markers for certain observations, we may find
intuitive descriptions for the dimensions on which we had just plotted the data. For
example, Poole & Rosenthal (1985) projected the votes cast by all Congressmen
in all US Congresses, and found that 90% of the variance in vote patterns could
be explained by two dimensions.! One of these dimensions could be broadly de-
scribed as ‘fiscal issues’ and the other as ‘social issues.” This method stands out
because Poole & Rosenthal did not have to look at bills and place them on either
scale—the data placed itself, and they just had to name the scales.

Shepard & Cooper (1992) asked their sighted subjects questions regarding color
words (red, orange, ...), and did a principal component analysis on the data to
place the words in two dimensions, where they formed a familiar color wheel.
They did the same with blind subjects, and found that the projection collapsed to a
single dimension, with violet, purple, and blue on one end of the scale, and yellow
and gold on the other. Thus, the data indicates that the blind subjects think of colors
on a univariate scale ranging from dark colors to bright colors.

It can be shown that the best n axes, in the sense above, are the n eigenvectors of
the data’s covariance matrix with the n largest associated eigenvalues.

The programs discussed below query three variables from the US Census data: the
population, median age, and males per 100 females for each US state and common-
wealth, the District of Columbia and Puerto Rico. They do a factor analysis and
then project the original data onto the space that maximizes variance, producing
the plot in Figure 8.1.

The programs also display the eigenvectors on the screen. They find that the first
eigenvector is approximately (0.06, —1,0.03). among the three variables given,
the second term—population—by itself describes the most variance in the data.
The X -axis in the plot follows population?

The eigenvalues for the Y -axis are (0.96,0.05, —0.29), and are thus a less one-
sided combination of the first variable (males per female) and the last (median age).
That said, how can we interpret the Y axis? Those familiar with US geography will
observe that the states primarily covered by cities (at the extreme, DC) are high on

IThey actually did the analysis using an intriguing maximum likelihood method, rather than the eigenvector
method here. Nonetheless, the end result and its interpretation are the same.
2As of the 2000 census, Californias 33.8 million, Texas~ 20.8, New Yorka 19.0, Florida~ 16.0, et cetera.
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Figure 8.1 States decomposed into population on the X axis, and a combination of median age and
gender balance (urban-ness?) on the Y axis.

the Y -axis, while states that are far more rural than urban (at the extreme, Alaska)
are toward the bottom. Thus, the principal component analysis indicates that we
could plausibly interpret the variation in median age and male/female balance by a
single variable representing a state’s urban—rural balance. Because interpreting the
meaning of an artificial axis is a subjective exercise, other stories are also possible;
for example, one could also argue that this second axis instead represents a state’s
East-to-West location.

% CODING IT As with many algorithms, the process of coding is straightforward,

but involves a number of details. This section will show you the com-
putation of a principal component analysis on two levels. The first goes through
the steps of calculating eigenvectors yourself; the second is a single function call.

The input and output functions are identical for both programs, so the redundancy-
minimizing method of implementing these functions is via a separate file, Listing
8.2, and a corresponding header, which is too simple to be repeated here but is
included in the online code supplement as eigenbox.h.

The query_data function is self-explanatory. With the clause select geo_-
names as row_names, Apophenia will use the state names as row names rather
than plain data.

These programs are intended to be run via pipe to Gnuplot, like eigeneasy |
gnuplot -persist. So if we want additional information that Gnuplot will not
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#include "eigenbox.h"

apop_data =query_data(){

apop_db_open("data—census.db");

return apop_query_to_data(" select postcode as row_names, \n\
m_per_100_f, population/1e6 as population, median_age \n\
from geography, income,demos,postcodes \n\
where income.sumlevel= 040" \n\
and geography.geo_id = demos.geo_id \n\
and income.geo_name = postcodes.state \n\
and geography.geo_id = income.geo_id ");

}

void show_projection(gsl_matrix =pc_space, apop_data =data){
apop_opts.output_type =’p’;
apop_opts.output_pipe = stderr;
fprintf(stderr,"The eigenvectors:\n");
apop_matrix_print(pc_space, NULL);
apop_data =projected = apop_dot(data, apop_matrix_to_data(pc_space), 0, 0);
printf("plot *—’ using 2:3:1 with labels\n");
apop_data_show(projected);
}

Listing 8.2 The tools used below, including the query and a method for displaying labeled points.
Online source: eigenbox.c.

understand, we need to send it to a different location. Thus, lines 15—18 send out-
put to stderr, so the eigenvectors are printed to screen instead of sent down the
stdout pipeline to Gnuplot.

The plot command on line 20 is with labels, meaning that instead of points,
we get the two-letter postal codes, as seen in Figure 8.1.

As for the actual math, Listing 8.3 shows every step in the process.® The only hard
part is finding the eigenvalues of X'X; the GSL saw us coming, and gives us the
gsl_eigen_symm functions to calculate the eigenvectors of a symmetric matrix.
The find_eigens function shows how one would use that function. The GSL is
too polite to allocate large vectors behind our backs, so it asks that we pass in pre-
allocated workspaces when it needs such things. Thus, the findeigens function
allocates the workspace, calls the eigenfunction, then frees the workspace. It frees
the matrix whose eigenvalues are being calculated at the end because the matrix
is destroyed in the calculations, and should not be referred to again. To make sure
future tests in the way of if (!subject) ... work, the last line sets the pointer
to NULL.

3There is one cheat: the apop_sv_decomposition function would use the apop_normalize_for_-
svd (xpx->matrix) function to ensure that for each row, x’x = 1. You can erase line 28 of eigenhard.c,
input this SVD-specific normalization function after the apop_dot step, and look for subtle shifts.
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#include "eigenbox.h"

void find_eigens(gsl_matrix ssubject, gsl_vector xeigenvals, gsl_matrix xeigenvecs){
gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc((:subject)—>sizel);
gsl_eigen_symmuv(:subject, eigenvals, eigenvecs, w);
gsl_eigen_symmv_free (w);
gsl_matrix_free(xsubject); #subject = NULL,;

}

gsl_matrix xpull_best_dims(int ds, int dims, gsl_vector xevals, gsl_matrix xevecs){
size_t indexes[dims], i;
gsl_matrix =pc_space = gsl_matrix_alloc(ds,dims);
gsl_sort_vector_largest_index(indexes, dims, evals);
for (i=0; i<dims; i++){
APOP_MATRIX_COL(evecs, indexes[i], temp_vector);
gsl_matrix_set_col(pc_space, i, temp_vector);
}
return pc_space;

}

int main(){

int dims = 2;

apop_data xx = query_data();

apop_data xcp = apop_data_copy(x);

int ds = x—>matrix—>size2;

gsl_vector xeigenvals = gsl_vector_alloc(ds);

gsl_matrix xeigenvecs = gsl_matrix_alloc(ds, ds);
apop_matrix_normalize(x—>matrix, ’c’, 'm’);
apop_data xxpx = apop_dot(x, x, 1, 0);
find_eigens(&(xpx—>matrix), eigenvals, eigenvecs);
gsl_matrix =pc_space = pull_best_dims(ds, dims, eigenvals, eigenvecs);
show_projection(pc_space, cp);

Listing 8.3 The detailed version. Online source: eigenhard.c.

If the space of the data has full rank, then there will be three eigenvectors for
three-dimensional data. The pull_best_dimensions function allocates a new
matrix that will have only dims dimensions, and the best eigenvectors are in-
cluded therein. Again, the GSL saw us coming, and provides the gsl_sort_-
vector_largest_index function, which returns an array of the indices of the
largest elements of the evals vector. Thus, indexes [0] is the index of the largest
eigenvalue, indexes [1] is the point in the vector of values with the second largest
eigenvector, et cetera. Given this information, it is an easy for loop (lines 14-17)
to copy columns from the set of all eigenvectors to the pc_space matrix.

Finally, after the principal component vectors have been calculated, show_projec-
tion produces a graphical representation of the result. It projects the data onto the
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space via the simple dot product data-pc_space, and then produces Gnuplottable
output as per the tricks discussed above.

* Given all these functions, the main routine is just declarations and function calls
to implement the above procedure: pull the data, calculate X'X, send the result to
the eigencalculator, project the data, and show the results.

#include "eigenbox.h"

int main(){

}

int dims = 2;

apop_data xx = query_data();

apop_data :cp = apop_data_copy(x);

apop_data xpc_space = apop_matrix_pca(x—>matrix, dims);

fprintf(stderr, "total explained: %Lf\n", apop_sum(pc_space—>vector));
show_projection(pc_space —>matrix, cp);

Listing 8.4 The easy way: just let apop_sv_decomposition do the work. Online source:

eigeneasy.c.

Listing 8.4 presents the same program using the apop_matrix_pca function to do
the singular value decomposition in one quick function call. That function simply
does the normalization and bookkeeping necessary to use the gsl_linalg SV_-
decomp function. All that is left for the main function in Listing 8.4 is to query the
input data to a matrix, call the SVD function, and display the output results.

Q..

A matrix is positive definite (PD) iff all of its eigenvalues are greater than
zero, and positive semidefinite (PSD) iff all of its eigenvalues are greater
than or equal to zero. Similarly for negative definite (ND) and negative
semidefinite (NSD).

These are often used as multidimensional analogues to positive or negative.
For example, just as #2 > 0,Vz € R, X - X is PSD for any X with real
elements. An extremum of f(z) is a maximum when the second derivative
1" (x) is negative, and a minimum when f”(z) is positive; f(x) is a maxi-
mum when the matrix of second partial derivatives is NSD, and a minimum
when the matrix of second partials is PSD (otherwise it’s a saddle point rep-
resenting a maximum along one direction and a minimum along another,
and is thus a false extremum). >
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>
Write a function matrix_is_definite that takes in a matrix and outputs a
Q single character, say P, ’p’, N, or ’n’, to indicate whether the matrix
8.1 is one of the above types (and another character, say ’x?, if it is none of

them). Write a test function that takes in any data matrix X (your favorite
data set or a randomly-generated matrix) and checks that X - X is PSD.

» Principal component analysis projects data of several dimensions
onto the dimensions that display the most variance.

» Given the data matrix X, the process involves finding the eigenvalues
z of the matrix X'X associated with the largest eigenvalues, and then
projecting the data onto the space defined by those eigenvectors.

» apop_matrix_pca runs the entire process for the efficiently lazy
user.

8.2 OLS AND FRIENDS  Assume that our variable of interest, y, is described
by a linear combination of the explanatory variables,
the columns of X, plus maybe a Normally-distributed error term, €. In short, y =
X3 + €, where 3 is the vector of parameters to be estimated. This is known as
the ordinary least squares (OLS) model, for reasons discussed in the introduction

to this chapter

To a great extent, the OLS model is the null prior of models: it is the default that
researchers use when they have little information about how variables interrelate.
Like a good null prior, it is simple, it is easy for the computer to work with, it flex-
ibly adapts to minor digressions from the norm, it handles nonlinear subelements
(despite often being called linear regression), it is exceptionally well-studied and
understood, and it is sometimes the case that y really is a linear combination of the
columns of X.

OLS is frequently used for solving the snowflake problem from the last chapter:
we had a series of very clean univariate models that stated that the outcome of
interest is the result of a series of identical draws with equal probability, but in
most real-world situations, each draw is slightly different—in the terminology of
OLS, we need to control for the other characteristics of each observation. The term
control for is an analogy to controlled experiments where nuisance variables are
fixed, but the metaphor is not quite appropriate, because adding a column to X
representing the control leads to a new projection onto a new space (see below),
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and may completely change the estimate of the original OLS parameters.* Later
sections will present other options for surmounting the snowflake problem when
using the distributions from the last chapter.

Because linear models are so well-studied and documented, this book will only
briefly skim over them.> This chapter puts OLS in the context from the first page
of this book: a model that claims a relationship between X and y and whose pa-
rameters can be estimated with data, whose computational tools provide several
conveniences. The next chapter briefly covers OLS for hypothesis testing.

Unlike the models to this point, OLS implicitly makes a causal claim: the variables
listed in X cause y to take the values they do. However, there is no true concept of
causality in statistics. The question of when statistical evidence of causality is valid
is a tricky one that will be left to the volumes that cover this question in detail.®
For the purposes here, the reader should merely note the shift in descriptive goal,
from fitting distributions to telling a causal story.

A brief derivation  Part of OLS’s charm is that it is easy (and instructive) to de-
rive ,8 for the OLS case. We seek the parameter estimate B that
minimizes the squared error, €' €, where y = XB + €.

This is smallest when the error term € is orthogonal to the space of X, meaning
that X'e = 0. If X ande = y — X,B were not orthogonal, then we could always
reduce the size of € by twiddling B by an iota to either B+iorfB—ut.

% Proof: After adding ¢ to 3, the new equation wouldbe y = X3+Xe+ (e—Xu),
meaning that the new error term is now €, = € — Xt, and
€.e,=(e—Xu) (e —Xu)
=€ée—2/Xe +/X'X..

The last term, /X’X, is always a non-negative scalar, just as x - T is non-negative
for any real value of z. So the only way that €] €, can be smaller than €€ is if
2¢'X'e > 0. But if X’e = 0, then this is impossible.

The last step of the proof is to show that if ¢'X e is not zero, then there is always
a way to pick ¢ such that €, €,, < €'e. Q: Prove this. (Hint: if ¢'X’e # 0, then the

4That is, regression results can be unstable, so never trust a single regression.

SEconomists are especially dependent on linear regression, because it is difficult to do controlled studies on
the open economy. Thus, econometrics texts such as Maddala (1977), Kmenta (1986), or Greene (1990) are a
good place to start when exploring linear models.

6See Perl (2000) or any book on structural equation modeling. The typical full causal model is a directed
acyclic graph representing the causal relationships among nodes, and the data can reject or fail to reject it like any
other model.
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same is true for ¢y = 2c and ¢j, = ¢/2.) ¢

Projection  So we seek 3 that will lead to an error such that X’e = 0. Expanding €
toy — X3, we can solve for 3:

X'ly - XB]=0
X'y =X'X/3
(X'X)"'X'y =5

This is the familiar form from page 3.
Now consider the projection matrix, which is defined as
X" =Xx(X'X)7'x"7

It is so named because, as will be demonstrated below, X'v projects the vector v
onto the space of X.

Start with X' X. Writing this out, it reduces instantly: X(X'X)"!1X’X = X. So
the projection matrix projects X onto itself.

The expression X e also simplifies nicely:

XPe=X(X'X)"'X'[y — X3
=X(X'X)" X'y - X(X'X) ' Xy]
=X(X'X) X'y - X(X'X)1X'X(X'X)" 1 X'y
=X(X'X)" X'y - X(X'X)" X'y
=0.

The projection matrix projects € onto the space of X, but € and X are orthogonal,
so the projected vector is just 0.

What does the projection matrix have to do with OLS? Since 3 = (X'X)"1X'y,
XB = X(X'X)"'X'y = XPy. Thus, the OLS estimate of y, y = X3, is the
projection of y onto the space of X: y = X y.

And that, in a nutshell, is what OLS is about: the model claims that y can be
projected onto the space of X, and finds the parameters that achieve that with least
squared error.

TThis is sometimes called the hat matrix, because (as will be shown), it links y and y.
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A sample projection At this point in the narrative, most statistics textbooks would

0N N WN =

[N O R O R
N = OOV WD~ O\

include a picture of a cloud of points and a plane onto which
they are projected. But if you have a Gnuplot setup that lets you move plots, you
can take the data and projected points in your hands, and get a feel for how they
move.

#include "eigenbox.h"
gsl_vector do_OLS(apop_data =set);

gsl_vector :xproject(apop_data =d, apop_model +m){
apop_data «d2 = apop_data_copy(d);
APOP_COL(d2, 0, ones);
gsl_vector_set_all(ones, 1);
return apop_dot(d2, m—>parameters, 0, ’v’)—>vector;

}

int main(){
apop_data =d = query_data();
apop_model +m = apop_estimate(d, apop_ols);
d—>vector = project(d, m);
//d—>vector = do_OLS(d);
d—>names—>rowct = 0;
d—>names—>colct = 0;
apop_data_print(d, "projected");
FILE :xcmd = fopen("command.gnuplot", "w");
fprintf(cmd, "set view 20, 90\n\
splot *projected’ using 1:3:4 with points, ’projected’ using 2:3:4\n");
}

Listing 8.5 Code to project data onto a plane via OLS. Compile with eigenbox.c from earlier.
Online source: projection.c.

Listing 8.5 queries the same data as was plotted in Figure 8.1, does an OLS projec-
tion, and produces a Gnuplot command file to plot both the original and projected
data.

Ignore lines 2 and 15 for now; they will allow us to do the projection manually
later on.

Line 13 does the OLS regression. The apop_estimate function estimates the pa-
rameters of a model from data. It takes in a data set and a model, and returns an
apop_model structure with the parameters set.

The project function makes a copy of the data set and replaces the dependent
variable with a column of ones, thus producing the sort of data on the right-hand
side of an OLS regression. Line seven calculates X 3.

When the data set is printed on line 18, the first column will be the X3 vector just
calculated, the second will be the original y data, and the third and fourth columns
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will be the non-constant variables in X.

* Gnuplot has some awkwardness with regards to replotting data (see page 170).
Lines 16—18 write the data to a file (with the row and column names masked out),
then lines 19-20 write a two-line command file. You can run it from the command
line via gnuplot command.gnuplot -, and should then have on your screen a
plot that you can move about.

The view set on line 20 is basically a head-on view of the plane onto which the
data has been projected, and you can see how the data (probably in green) shifts to
a projected value (red). It is a somewhat different picture from the PCA in Listing
170. [Q: Add the with label commands to put labels on the plot.] Spinning the
graph a bit, to set view 83, 2, shows that all of the red points are indeed on a
single plane, while in another position, at set view 90, 90, you can verify that
the points do indeed match on two axes.’

THE CATALOG Because OLS is so heavily associated with hypothesis testing, this
section will plan ahead and present both the estimates of 3 produced
by each model, its expected value, and its variance. This gives us all that we need

to test hypotheses regarding elements of our estimate of 3, [3

OLS The model:

cy=XB+e€
* n = the number of observations, so y and € are n x 1 matrices.
* k =the number of parameters to be estimated. X isn x k; 3 is k by 1.

¢ Many results that will appear later assume that the first column of 3 is a column of
ones. If it isn’t, then you need to replace every non-constant column x; below with
X; — X;, the equivalence of which is left as an exercise for the reader.” See below
for the actual format to use when constructing your apop_data set.

Assumptions:

* E(e) =0.

s var(e;) = o2

, a constant, V 4.

8If your Gnuplot setup won’t let you spin the plot with a pointing device, then you can modify the Gnuplot
command file to print three separate static graphs in three files via the set view commands here, or you can try
a command like set view 83, 2; replot at the Gnuplot command prompt.

o1f you would like to take the route of normalizing each column to have mean zero, try apop_matrix_norm-
alize(dataset, ’m’). This will normalize a 1 column to 0, so after calling the normalize function, you may
need to do something like APOP_COL(your_data, O, onecol); gsl_vector_set_all(onecol, 1).
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* cov(ej,€5) = 0, Vi # j. Along with the above assumption, this means that the
n X n covariance matrix for the observations’ errors is ¥ = o21.

* The columns of X are not collinear (i.e., det(X'X) # 0, so (X’X) ™! exists).!°
°n>k.

Notice that we do not assume that € has a Normal distribution, lgut that assumption
will be imposed in the next chapter, when we apply ¢ tests to 3. When all of that
holds, then

ABOLS =(X'X)"'(X'y)
E(Bors) =P8
var(Bopg) = o (X'X) ™

Almost anything can have a variance, which often creates confusion. A column of
data has a variance, the column of errors € has a variance, the estimate 31 g has a
covariance matrix, and (if so inclined) you could even estimate the variance of the
variance estimate 2. The variance listed above is the K x K covariance matrix
for the estimate By g, and will be used for testing hypotheses regarding 3 in later
chapters. It is a combination of the other variances: the variance of the error term €
18 a?, and the various columns of the data set have covariance X’X, so the variance
of Bprg is the first times the inverse of the second.

INSTRUMENTAL VARIABLES The proofs above gave us a guarantee that we will
calculate a value of 3 such that X will be uncorre-
latedto e =y — x03.

Our hope is to estimate a ‘true’ model, claiming that y = X3 + €, where X is
uncorrelated to €, and so on. But if it is the case that a column of X really is
correlated to the error in this model, then there is no way that ,B (which guarantees
that the estimated error and the columns of X are not correlated) could match 3
(which is part of a model where error and a column of X are correlated). This
creates major problems.

For example, say that one column of the data, x;, is measured with error, so we are
actually observing x; + €;. This means that the error term in our equation is now

101f this assumption is barely met, so det(X’X) is not zero but is very small, then the resulting estimates
will be unstable, meaning that very small changes in X would lead to large changes in (X’X) ™1 and thus in the
parameter estimates. This is known as the problem of multicollinearity. The easiest solution is to simply exclude
some of the collinear variables from the regression, or do a principal component analysis to find a smaller set of
variables and then regress on those. See, e.g., Maddala (1977, pp 190-194) for further suggestions.
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the true error joined with an offset to the measurement error, € = € — ¢;. If the true
x; and the true € have no correlation, then x; + €; and € — ¢; almost certainly do.

As above, the OLS estimate of 3 is Borg = (X'X)~ X'y, or taking a step back
in the derivation, (X'X)Bo1s = X'y. Also, the true 3 is defined to satisfy y =
X3+ €. With a few simple manipulations, we can find the distance between 3 and

3:

y=XB+¢€
X'y=X'X3+ X'e
(X'X)Bors=X'XB + X'e
(X'X)(Bors — B) =X'e
Bors — B=(X'X)"'X'e (8.2.1)

If X’e = 0, then the distance between BOLS and 3 is zero—BOLS is a consis-
tent estimator of 3. But if X and € are correlated, then BOLS does not correctly
estimate 3. Further, unless we have a precise measure of the right-hand side of
Equation 8.2.1, then we don’t know if our estimate is off by a positive, negative,
large or small amount. Still further, every column of X affects every element of
(X'X)~1, so mismeasurement of one column can throw off the estimate of the
OLS coefficient for every other column as well.

The solution is to replace the erroneously-measured column of data with an in-
strument, a variable that is not correlated to € but is correlated to the column of
data that it will replace. Let x; be the column that is measured with error (or is
otherwise correlated to €), let z be a column of alternate data (the instrument), and
let Z be the original data set X with the column x; replaced by z. If cov(z, €) = 0,
then the following holds:

A/BIV = (Z'X)""(Zy)
E(B) =8
var(Bry) = 02(Z'X) " 2 Z(X'Z) "}

Whe det(Z'X) is small, (Z’'X)~!—and thus the variance—is large; this happens
when cov(z,x;) — 0. We want the variance of our estimator to be as small as
possible, which brings us to the usual rule for searching for an instrument: find
a variable that can be measured without significant error, but which is as well-
correlated as possible to the original variable of interest.
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GLS Generalized Least Squares generalizes OLS by allowing €’e to be a known

matrix 3, with no additional restrictions. Note how neatly plugging oI in to

the estimator of 3 and its variance here reduces the equations to the OLS versions
above.

Bars = (X'71X) (XS y)
E(BcLs) =0
var(Barg) = (X'27'X) ™!

But there is a computational problem with GLS as written here. For a data set of
a million elements, 3 is 10° x 10 = 10!2 (a trillion) elements, and it is often the
case that all but a million of them will be zero. A typical computer can only hold
tens of millions of doubles in memory at once, so simply writing down such a
matrix is difficult—Ilet alone inverting it. Thus, although this form is wonderfully
general, we can use it only when there is a special form of ¥ that can be exploited
to make computation tractable.

WEIGHTED LEAST SQUARES For example, let X be a diagonal matrix. That is, er-

rors among different observations are uncorrelated,

but the error for each observation itself is different. This is heteroskedastic data.

The classic example in Econometrics is due to differences in income: we expect

that our errors in measurement regarding the consumption habits of somebody

earning $10,000/year will be about a thousandth as large as our measurement er-
rors regarding consumption by somebody earning $10 million/year.

It can be shown (e.g., Kmenta (1986)) that the optimum for this situation, where
o is known for each observation ¢, is to use the GLS equations above, with ¥ set
to zero everywhere but the diagonal, where the ith element is %

The GLS equations about 3 now apply directly to produce Weighted Least Squares
estimates—and there is a trick that lets us do computation using just a vector of
diagonal elements of %, instead of the full matrix. Let /o be a vector where the
ith element is the square root of the ith diagonal element of 3. For WLS, the ith
element of /o is thus Ui Now let yx; be a vector whose ith element is the ¢th
element of y times the ith element of /o, and Xy, be the column-wise product of
X and /o . That is,
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void columnwise_product(gsl_matrix xdata, gsl_vector #sqrt_sigma){
for (size_t i=0; i< data—>size2; i++){
Apop_matrix_col(data, i, v);
gsl_vector_mul(v, sqrt_sigma);

Then you can verify that X§{, Xy = X'YX, X{ys, = X'Yy, and so

CHAPTER 8

BWLS (XEXE) Xz ys)
E(Bwis) =

var(Byrs) = (szz) !

Thus, we can solve for the Weighted Least Squares elements without ever writing
down the full 3 matrix in all its excess. This is the method used by apop_wls
(which is what you would use in practice, rather than calculating Xy, yourself).

estimate an OLS model in one line:

[apop_estimate_show(apop_estimate(set, apop_ols));

If you already have a data matrix in apop_data #*set, then you can

If your data set has a non-NULL weights vector, then you could replace apop_ols

in the above with apop_wls.

If you would like more control over the details of the estimation routine, see page
145 on the format for changing estimation settings, and the online references for
the detailed list of options. The apop_IV model requires the settings setting treat-
ment, because that model requires that the settings’ instruments element is set.

In the exercise on page 232, you found a relationship between males per

female (the dependent variable) and both density and male—female wage
ratios (the independent variables). Produce an appropriate data set and send

it to apop_estimate (your_data, apop_ols) to check the coefficients

when both independent variables are included.
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If the assumptions of OLS do not fit, then you will need to be ready to modify the
innards of the OLS estimation to suit, so the remainder of this section goes back
to the linear algebra layer of abstraction, to go over the steps one would take to
estimate 3.

Listing 8.6 extends the example in Listing 8.5 (page 273) by doing every step
in the linear algebra of OLS. Uncomment Line 15 in that code, link it with this
(by adding projectiontwo.o to the OBJECTS line in the makefile), and re-run to
produce the new projection, which should be identical to the old.

#include <apop.h>

gsl_vector +do_OLS(apop_data =set){
apop_data «d2 = apop_data_copy (set);
APOP_COL(d2, 0, firstcol);
apop_data xy_copy = apop_vector_to_data(apop_vector_copy (firstcol));
gsl_vector_set_all(firstcol, 1);

apop_data =xpx = apop_dot(d2,d2,’t’,0);
gsl_matrix #xpxinv = apop_matrix_inverse(xpx —>matrix); /(X'X) !
apop_data xsecond_part = apop_dot(apop_matrix_to_data(xpxinv), d2,0,’t’);

apop_data =beta = apop_dot(second_part, y_copy, 0, 0); /(X'X) X'y
strcpy(beta—>names—>title, "The OLS parameters");
apop_data_show (beta);

apop_data xprojection_matrix = apop_dot(d2, second_part,0,0); /X (X'X) "' X'
return apop_dot(projection_matrix, y_copy, 0,0)—>vector;

}

Listing 8.6 The OLS procedure and its use for projection, spelled out in great detail. Online source:
projectiontwo.c.

Typically, the y values are the first column of the data matrix, so the first step
is to extract the data into a separate vector. Lines 4-7 do this, and end up with
one apop_data set named y_copy which copies off the first column of the input
matrix, and a second set named d2, which is a copy of the input matrix with the
same first column set to 1.

Lines 9-11 find (X'X)~'X’. If you like, you can use the debugger to check the
value of any of the intermediate elements all along the calculation.

Now that we have (X’X)~1X’, Lines 13-15 do the single additional dot product
to find 8 = (X'X)~!'X'y, and display the result.

Line 17 produces the projection matrix X (X’'X)~!X', and given the projection
matrix, another dot product projects y onto it.
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The GSL has a function to solve equations of the type A3 = C using
Householder transformations, and this happens to be exactly the form we
have here—(X’'X)3 = (X'y). Given apop_data sets for X'X, X'y, and a
gsl_vector allocated for beta, this line would fill beta with the solution
to the equation:

[gsl_linalg_HH_solve (xpx—>matrix, Xxpy —>vector, *beta);

In practice, it is almost necessary to take the inverse to solve for OLS pa-
rameters, because the covariance matrix of 3 is o2 (X’X)~!. But the House-
holder method manages to avoid explicitly finding the inverse of X’'X, and
may thus be quicker in situations like the Cook’s distance code (page 133)
where a for loop solves for thousands of OLS parameter sets.

Rewrite projectiontwo.c to use the Householder transformation to find
beta. Check that the results using this alternate method match the beta
found via inversion.

» The Ordinary Least Squares model assumes that the dependent vari-
able is an affine projection of the others. Given this and other as-
sumptions, the likelihood-maximizing parameter vector is Borg =
(X'X)"H(X'Y).

» If X # I, then Bgrg = (X'EX)~H(X’YY). Depending on the value

of ¥, one can design a number of models.

» In most cases, you can use apop_estimate. But if need be, coding
these processes is a simple question of stringing together lines of lin-
ear algebra operations from Chapter 4.

8.3 DISCRETE VARIABLES To this point, the regression methods have been

assuming that both y and the elements of X are

all continuous variables € R. If they are discrete variables € {0,1,2,... }, then
we need to make modifications.

There are a number of distinctions to be made. First, the approaches to handling
columns of discrete variables in X are different, and simpler, than approaches to
handling discrete values of the outcome variable y. If y only takes on integer
values, or worse, is just zero or one, then there can’t possibly be a 3 and a Normally
distributed e that satisfy y = X3 + €. There are convolutions like stipulating that
for observations where x3 < 0 we force € such that x3 + ¢ = 0 and where
x3 > 1 we force x3 + € = 1, but then € is non-Normal, which makes a mess of
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the hypothesis tests we’ll run in later chapters. More generally, such an approach
lacks grace, and requires a cascade of little fixes (Greene, 1990, p 637).

How we proceed in either case depends on the type of discrete variable at hand:

* A discrete binary variable takes on exactly two values, such as male/female or
case/control, and can be rewritten as simply either zero or one.

* Ordered, discrete data are typically a count, such as the number of children or cars
a person owns.

* Most qualitative categorizations lead to multi-valued and unordered data. For ex-
ample, a Metro station could be on the Red, Blue, Green, Orange, and Yellow line,
or a voter could align himself with a Red, Blue, Green, or Other party.

DUMMY VARIABLES For a column of zero—one data in the independent data X, we
don’t really have to modify OLS at all, but we change the in-
terpretation slightly: taking zero as observations in the baseline and one as the
observations in the treatment group, the OLS coefficient on this zero—one dummy
variable can indicate how effective the treatment is in changing the outcome.
Tests for the significance of the dummy variable can be shown to be equivalent

to ANOVA tests of a category’s significance.

As an extension, if the categories are ordered but discrete, like the number of chil-
dren, then we again don’t have to do anything: if a jump fromz = Otoz = 1
induces a shift of size § in the outcome, then a jump from x = 1 to z = 2 would
do the same under a linear model, and a jump from x = 0 to x = 2 would produce
a jump of size 20. If it is natural to presume this, then the model does no violence
to reality.!!

But if the categories are discrete and unordered, then we can’t use one variable with
the values {0, 1,2, ...}, because the implied linear relationship makes no sense.
With 0=Green, 1=Blue, 2=Red, does it make sense that a shift from Green to Blue
will have exactly the same effect as a shift from Blue to Red, and that a shift from
Green to Red would have exactly twice that effect? In this case, the solution is to
have a separate variable for all but one of the choices, and thus to produce n — 1
coefficients for n options. The excluded option is the baseline, like the zero option
in the binary case. Here, the function apop_data_to_dummies saves the day: it
takes the ith column from the data set and outputs a table with n— 1 binary dummy
variables; see the example below for usage.

Given multiple categories, you could even produce inferaction terms to repre-
sent membership in multiple categories: e.g., control x male, control x female,

111f the perfectly linear form is implausible, it may be sensible to transform the input variable, to the square

of z or \/z.
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treatment x male, treatment x female. The easiest way to do this is to sim-
ply create a column with two other columns mashed together: in SQLite, the
query select ’left’ || ’right’ produces the string leftright; in mySQL,
concat(’left’, ’right’) does the same. Then break the column down into
n — 1 dummy variables as above.

The underlying claim with zero—one dummy variables is y = X3 + k, where
k indicates a constant value that gets added to the controls but not the cases, for
example. But say that we expect the slopes to differ from cases to controls; for
cases the equation is y = x1 31 + X232 and for controls itis y = x1 (31 +k)+x2/.
The way to get a standard regression to produce k in this case would be to produce
a data set which has the appropriate value x; for each control, but zero for each
case. Then the regression would be equivalent to y = x13; + x1k + X202 for
controls and y = x1 31 + X2, for cases, as desired.

#include <apop.h>

apop_model * dummies(int slope_dummies)
apop_data xd = apop_query_to_mixed_data("mmt", "select riders, year—1977, line \
from riders, lines \
where riders.station=lines.station");
apop_data +dummified = apop_data_to_dummies(d, 0, ’t’, 0);
if (slope_dummies){
Apop_col(d, 1, yeardata);
for(int i=0; i < dummified —>matrix—>size2; i ++){
Apop_col(dummified, i, c);
gsl_vector_mul(c, yeardata);
}
}
apop_data xregressme = apop_data_stack(d, dummified, 'c’);
apop_model out = apop_estimate(regressme, apop_ols);
apop_model_show (out);
return out;

}

#ifndef TESTING

int main(){
apop_db_open("data—metro.db");
printf("With constant dummies:\n"); dummies(0);
printf("With slope dummies:\n"); dummies(1);

}
#endif

Listing 8.7 Two regressions with dummy variables. Online source: dummies. c.

Listing 8.7 runs a simple regression of ridership at each station in the Washington
Metro on a constant, the year, and a set of dummy variables for Green, Orange,
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Red, and Yellow lines (meaning the Blue line is the baseline).

* The query on line four pulls two numeric columns (ridership and year) and one
text column.

* Line 7 converts text column zero into an apop_data set consisting of dummy
variables. If you ask the debugger to display the dummified data set, you will see
that every row has a 1 in at most a single column.

* Line 15 stacks the dummies to the right of the other numeric data, at which point
the data set is in the right form to be regressed, as on line 16. Again, it is worth
asking the debugger to show you the data set in its final, regressable form.

* We will test the claim that these two tests are equally likely on page 354; the
#ifndef wrapper on lines 21 and 27 will let us read this file into the testing pro-
gram. Here, the wrapper is innocuous.

* The slope_dummies switch determines whether the dummies will be constant
dummies or slope dummies. For constant dummies, we need only zeros or ones,
so as above, apop_data_to_dummies gives us what we need. For slope dummies,
we need to replace every 1 with the current year, which is what the column-by-
column vector multiplication achieves over lines 9-13.

PROBIT AND LOGIT Now we move on to the question of discrete outcome vari-

ables. For example, a person either buys a house or does not,

which makes house purchasing a binary variable. Say that the value of a house is a

linear sum of the value of its components: an extra bedroom adds so many dollars,

a nearby highly-rated school adds so many more, each square meter is worth a

few thousand dollars, et cetera. That is, one could write down a linear model that

total value U = (31-cost + (B2-bedrooms + (33-school quality + (4-square meters
+--- + ¢, where f3; is typically normalized to —1 and e is the usual error term.'?

To phrase the model briefly: U = x3 + ¢. But rather than leaving the model in the
standard linear form, we add the rule that a person buys iff U > 0. Thus, the input
is the same set of characteristics x (of consumers or of houses) and weightings 3,
and the output is a binary variable: the person acted or did not; the buyer consumed
or did not; the geyser erupted or did not, et cetera.

From here, the details of the decision model depend on whether the outcome is
binary, multivalued but unordered, or ordered.

* Logit with two choices: The first alternative, the logit model or logistic model, as-
sumes that € ~ a Gumbel distribution. The Gumbel is also known as the Type I

12Real estate economists call this the hedonic pricing model, whose implementation typically differs in some
respects from the logit model discussed here. See Cropper et al. (1993) for a comparison.
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Extreme Value distribution, meaning that it expresses the distribution of the statis-
tic max(x) under appropriate conditions. McFadden (1973) won a Nobel prize
partly by showing that the above assumptions, including the rather eccentric error
term, reduce to the following simple form:

1
PO = 1 o ay)
P(1]x) = exp(x54)

1 +exp(x8;)

There is no 3 because is it normalized to 0, so exp(x3,) = 1.

Probit: The probit model has a similar setup to the logit, but e ~ N(0, 1).

The model can be rephrased slightly. Say that U (x) is deterministic, but the prob-
ability of consuming given some utility is random. To describe such a setup, let
U = —x[3 rather than —x3 + ¢ (the introduction of a minus sign will be discussed
in detail below), and let the probability that the agent acts be

U(-xB)
PIB) = [ N0, vy,
—o

where N (y|0,1) indicates the Normal PDF at y with 4 = 0 and 0 = 1, so the
integral is the CDF up to U(—x23).

As you can see, this is a much more ornery form, especially since the CDF of the
Normal (what engineers call the error function, or more affectionately, erf) does
not simplify further and is not particularly easy to calculate. This partly explains
the prevalence of the logit form in existing journal articles, but is not much of an
issue now that maximum likelihood estimation is cheap, even when erf is involved.

With k different options, the logit model generalizes neatly for the case of multiple
values, to the multinomial logit:

1
P(0|B)= and

1+ Zf:l exp(x0;)

(8.3.1)

P(k|B) = eip(Xﬂx) EA0
1+ 30 exp(x0;)
where B is the set of choices from which z is chosen, and 3, is a different vector
of coefficients for each option k£ # 0. You can see that 3, is once again normalized
to 0, and given only options zero and one, the form here reduces to the binomial
form above.!?

Ordered multinomial probit: Presume that there is an underlying continuous vari-
able Y* = —X@suchthatthetrue Y; = 0if V;* < 0;Y; =1if 0 < Y;* < Ay;
Y; =2if A; <Y;* < Ay; and so on. That is,

13The generalization is so clean that Apophenia doesn’t even include separate binary and multinomial logit
models: the apop_logit model just counts the options and acts accordingly.
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A,-X03
P(Y; = 0) = / N (y0, 1)dy

—00

A,—X3
P == [ N GI0 1y

Pi=2= [ NGioDdy

Rather than finding a single cutoff between acting and not acting, we estimate
several cutoffs, between choosing zero, one, two, ...items; estimating apop_-
multinomial_probit will therefore return the usual vector of parameters (3, plus
avector of Ay, Ao, ..., Ap_1 for k options.

Parameter overload  Very reasonable models can produce an overwhelming num-

ber of parameters. For the multinomial logit model above,

with k options and n elements in each observation x, there are n x (k — 1) param-

eters to be estimated. Your goals will dictate upon which parameters you should
focus, and how you get meaning from them.

If the sole goal is to prove that A causes B, then the univariate test that the coeffi-
cient on A is significant is all we will look at from one of the above tests.

If we want to predict how comparable people will act in the future, then we need
the model’s estimate for the odds that each individual will select any one choice,
and the predicted most likely selection. Perhaps you will want the full catalog, or
just the average probabilities via apop_data_summarize (outmodel.expected).

Or, you may want to know the dynamic shifts: what happens to B when A rises
by 1%? Economists call this the marginal change, though virtually every field has
some interest in such questions. This is closely related to the question of whether
the parameter on A is statistically significant: you will see in the chapter on max-
imum likelihood estimates that their variance (used to measure confidence for a
hypothesis tests) is literally the inverse of the second derivative (used to measure
change in outcome variable given change in income variable).

For a linear model, the marginal change is trivial to calculate: we proposed that
y = x/3, meaning that dy/dx; = [3;. That is, a 1% change in x; leads to a %
change in y.

Interpreting the marginal changes in the above models can be more difficult. For
the probit, the cutoff between draws that induce a choice of option zero and those
that lead to option one was —x3. As +x3 grows (either because of a marginal
expansion in an element of x or of 3), the cutoff falls slightly, and the set of draws
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that lead to option one grows. This fits our intiution, because we characterized the
elements of the linear sum x/3 as increasing the proclivity to choose option one.

For the ordered probit, there are multiple cutoffs. A marginal change in 3 will per-
haps raise the cutoff between options two and three, lowering the odds of choosing
three, but at the same time raise the cutoff between options three and four, raising
the odds of choosing three. See Greene (1990, p 672) or your estimation program’s
documentation for more on making productive use of the estimated model.

IIA" Return to the multinomial logit formula, Equation 8.3.1, and consider the ratio
of the probability of two events, £/; and Fs.

exp(x3,)
P(E1|:E7B) Zy€BCXp(XIBy)

P(Es|z, B) exp(x3,)
Zy€B eXP(XIBy)
_ exp(x3)

exp(x/3y)
The key point in this simple result is that this ratio does not depend on what else
is in the set of options. The term for this property is independence of irrelevant
alternatives, or IIA. The term derives from the claim that the choice between one
option and another in no way depends upon the other options elsewhere.

The standard example is commuters choosing among a red bus, a blue bus, and a
train, where the red bus and blue bus are identical except for their paint job. We
expect that the ratio of P(red)/P(blue) = 1, and let P(red)/P(train) = P(blue)/P(train)
= % If the train were out of service, then P(red)/P(blue) would still be 1, because
as many former train riders would now pick the blue bus as would pick the red, but
if the blue bus were knocked out of commission, then everybody who was riding
it would likely just switch to the red bus, so without the blue bus, P(red)/P(train)
= % In short, the train option is irrelevant to the choice of red or blue bus, but the
blue bus option is not irrelevant in the choice between train and red bus.

In the code supplement, you will find data-election.db, which includes a small
selection of survey data regarding the United States’s 2000 election, from National
Election Studies (2000). The survey asked respondents their opinion of various
candidates (including the two candidates for Vice President) on a scale from 0 to
100; in the database, you will find the person that the respondent most preferred.'*

4Duverger’s law tells us that a first-past-the-post system such as that of the United States tends to lead to
a stable two-party system, due to the various strategic considerations that go into a vote. We see this in the
data: question 793 of the survey (not included in the online supplement) asked the respondent for whom he or
she expects to vote, and the totals were: (Gore, 704), (Bush, 604), (everybody else, 116). The favorite from the
thermometer score avoids the strategic issues involved in vote choice, and produces a much broader range of
preferences: (Gore, 711), (Bush, 524), (Nader, 157), (Cheney, 68), et cetera. Q: Write a query to get the complete
count for each candidate from the survey data.
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The IIA condition dictates that the logit estimates of the relative odds of choosing
candidates won’t change as other candidates enter and exit, though intuitively, we
would expect some sort of shift. The examples also suggest a two-level model,
wherein people first choose a category (bus/train, Republican/Democrat/Green),
and then having chosen a category, select a single item (such as red bus/blue bus,
Buchanan/McCain). Such a model weakens IIA, because a choice’s entry or exit
may affect the choice of category. These hierarchies of class and item are a type
of multilevel model; the next section will give an overview of multilevel modeling
possibilities, including some further discussion of the nested logit.

The theoretical ITA property is irrefutable—there is not much room for error in the
two lines of algebra above. But many theoretical models can be pushed to produce
mathematically clean results that are just not relevant in the application of the
model to real data. Does IIA have a strong influence on real-world logit estimates?

We would test IIA by running one unconstrained logit, and another logit estima-
tion restricted so that one option is missing; this fits the likelihood ratio (LR) form
which will appear on page 351, and a few variants on this test exist in the literature.
Cheng & Long (2007) built a number of artificial data sets, some designed around
agents who make choices conforming to IIA, and some designed to not have the
ITA property. They found that the LR tests were ineffective: the unconstrained and
constrained odds ratios sometimes did not differ (demonstrating IIA) and some-
times did (against ITA), but there was no sufficiently reliable relationship between
when the underlying data had the IIA property and when the parameter estimates
demonstrated ITA. Fry & Harris (1996) used a less broad method that had slightly
more optimistic results, but still encountered glitches, such as problems with power
and results that were sensitive to which option was removed.

The probit model matches the logit save for the type of bell curve that describes
the error term, so one expects the parameters and predicted odds to be similar.
In fact, Amemiya (1981) points out that logit parameters typically match probit
parameters, but that they are scaled by a factor of about 1.6. That is, for each
option 4, ﬂiL ~ 1.6[3{3 . Yet, the logit parameters have the IIA property, while the
probit parameters do not. This is hard to reconcile, unless we accept that the IIA
property of the logit is theoretically absolute but empirically weak.

» For discrete explanatory variables, you can use the standard family of
OLS models, by adding dummy variables.

» The standard linear form X3 can be plugged in to a parent function,
like the Probit’s comparison of X3 to a Normal distribution or the
logit’s comparison to a Gumbel distribution, to generate models of
discrete choice. >
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» The Logit model has the property that the ratio of the odds of selecting
two choices, e.g., p(A) /p(B), does not depend on what other choices

z exist.

» The computational pleasantries that OLS demonstrates are no longer
applicable, and we usually need to do a maximum likelihood search
to find the best parameters.

8.4 MULTILEVEL MODELING Retake the snowflake problem from page 236:

the models to this point all assumed that each

observation is independently and identically distributed relative to the others, but
this is frequently not the case.

One way in which this may break is if observations fall into clusters, such as fami-
lies, classrooms, or geographical region. A regression that simply includes a fami-
ly/classroom/region dummy variable asserts that each observation is iid relative to
the others, but its outcome rises or falls by a fixed amount depending on its group
membership. But the distribution of errors for one family may be very different
from that of another family, the unobserved characteristics of one classroom of
students is likely to be different from the unobserved characteristics of another,
and so on.

A better alternative may be to do a model estimation for each group separately. At
the level of the subgroup, unmodeled conditions are more likely to be constant for
all group members. Then, once each group has been estimated, the parameters can
be used to fit a model where the observational unit is the group.

The other type of multilevel model is that where there are no distinct subclusters,
but we would like to give more detail about the derivation of the parameters. For
example, say that we feel that the propensity to consume a good is Normally dis-
tributed, but we know that the likelihood of consumption is also based on a number
of factors. We just saw this model—it is the probit, which asserted that the likeli-
hood of consuming is simply the CDF of a Normal distribution up to a parameter,
and that parameter has the form X3. The logit asserted that the probability of
consuming was exp(#)/(1 + exp(f)), where @ is of the form X /3.

These are examples of multilevel models. There is a parent model, which is typ-
ically the primary interest, but instead of estimating it with data, we estimate it
using the results from subsidiary models. To this point, we have broadly seen two
types of model: simple distributions, like the Normal(u, o) or the Poisson(\), and
models asserting a more extensive causal structure, like the OLS family. Either
form could be the parent in a multilevel model, and either form could be the child.
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Clustering A classroom model may assume a distribution of outcomes for each

classroom and estimate p; and o; for each class, and then assert a linear

form that the outcome variable is 31 ;t;+ 320;. Unemployment models are typically

modeled as Poisson processes, so one could estimate A; for each region ¢, but then
link those estimates together to assert that the \’s have a Normal distribution.

1 | #include <apop.h>
2
3 | void with_means(){
4 apop_data +d2 = apop_query_to_data("select avg(riders), year—1977 \
5 from riders, lines \
6 where riders.station=lines.station\
7 group by lines.line, year");
8 apop_model_show (apop_estimate(d2, apop_ols));
91}
10
11 | void by_lines(){
12 apop_data xlines = apop_query_to_text("select distinct line from lines");
13 int linecount = lines—>textsize[0];
14 apop_data xparameters = apop_data_alloc(0, linecount, 2);
15 for(int i=0; i < linecount; i ++){
16 char :xcolor = lines—>text[i][0];
17 apop_data «d = apop_query_to_data("select riders, year—1977 from riders, lines\n\
18 where riders.station = lines.station and lines.line = *%s’", color);
19 apop_model +m = apop_estimate(d, apop_ols);
20 APOP_ROW (parameters, i, 1);
21 gsl_vector_memcpy (r, m—>parameters —>vector);
22 }
23 apop_data_show(parameters);
24 apop_data s = apop_data_summarize(parameters);
25 apop_data_show(s);
26 |}
27
28 | int main(){
29 apop_db_open("data—metro.db");
30 printf("Regression parent, Normal child:\n\n"); with_means();
31 printf("Normal parent, regression child:\n\n"); by_lines();
32|}

Listing 8.8 Two model estimations: with a regression parent and with a Normal parent. Online
source: ridership.c.

Listing 8.8 estimates two models of the change in ridersip of the Washington Metro
over time. You already saw two models of this data set, in the form of two dummy-
variable regressions, on page 282. Here, we take a multilevel approach: first with
a regression parent and distribution child, and then the other way around.



gsl_stats March 24, 2009

290 CHAPTER 8

Having SQL on hand pays off immensely when it comes to clustering, because
it is so easy to select data where its group label has a certain value, or calculate
aggregates using a group by clause. It will not be apparent in this example using
just under 2,000 data points, but because SQL tables can be indexed, grouping and
aggregation can be much faster than sifting through a table line by line.

The first model is a regression parent, distribution child: we estimate a Normal
model for each Metro line for each year, and then regress on the set of ji’s thus
estimated. Of course, finding /i is trivial—it’s the mean, which even standard SQL
can calculate, so the output from the query on line 4 is already a set of statistics
from a set of Normal distribution estimations. Then, the regression estimates the
parameters of a regression on those statistics.

The second model is a distribution parent, regression child: we run a separate re-
gression for every Metro line and then find the mean and variance of the OLS
parameters. Line 12 queries a list of the five colors (Blue line, Red line, ...), and
then lines 15-22 are a for loop that runs a separate regression for each color, and
writes the results in the parameters matrix. Then, line 24 finds /i and & for the
set of parameters.

The estimations tell different stories, and produce different estimates for the slope
of ridership with time. Notably, the Green line added some relatively unused sta-
tions in the 1990s, which means that the slope of the Green line’s ridership with
time is very different from that of the other lines. This is very clear in the second
case where we run a separate regression for every line, but is drowned out when
the data set includes every line.

Notice also that the size of the parent model’s data set changes with different spec-
ifications: in the first model, it was 150; in the second, it was 5. Thus, the first
model had greater confidence that the slope was different from zero.'> Gelman
& Hill (2007) point out that we test parameters only on the parent model, which
means that if n is very small for some of the clusters, then this should have no
effect on the parent—even n = 1 for some clusters is not a problem. Clusters with
small n should show large natural variation in child parameter estimates, and that
would be reflected in the quality of the estimation of the parent parameters. But
since we neither make nor test claims about the child parameters, there is no need
to concern ourselves directly with the ‘quality’ of the child parameters.

51n the second specification, with five data points, one has a negative slope and four a positive slope. Nonethe-
less, the mean is still about three times & /1/n, giving us about 99% confidence that the mean is significant.



gsl_stats March 24, 2009

LINEAR PROJECTIONS 291

To get a better handle on what differs among the lines and within the overall
regression, draw some graphs:

* total ridership per year

* average ridership per year

* total ridership for each line.
Q8~4 * average ridership for each line.

The difference between the total and average ridership is based on the fact
that the number of stations is not constant over time—produce a crosstab of
the data to see the progression of new station additions.

The plots for each line are best written via a for loop based on the one be-
ginning on line fifteen of Listing 8.8. How do the graphs advise the statistics
calculated by the two dummy and two multilevel models?

An example: multi-level logit  We can break down the process of choosing a pres-
idential candidate into two steps: first, the voter de-
cides whether to choose a Democrat, Republican, or Green candidate, and then
chooses among the offered candidates in the chosen party. The probability of se-
lecting a candidate is thus P(candidate) = P(candidatelparty) P(party). We would
thus need to do a few logit estimations: one for the Democratic candidates, one for
the Republican candidates, and one for the party choice.!® The ITA property would
continue to hold within one party, but among parties, the change in candidates
could shift P(party), so the proportional odds of choosing a given Democrat ver-
sus choosing a given Republican may shift. Listing 8.9 does some of these logit
estmations along the way to the multilevel model.

* Once again, SQL saves the day in doing these multilevel estimations. In this case,
the explanatory variables won’t change from model to model, so they are fixed
in the logit function, but the outcome variable will change. Thus, the function
takes in the varying tail of the query and appends it to the fixed list of explanatory
variables to pull out consistent data.

* The tails of the queries, in main, are straightforward: get all candidates, get all
Democrats, get all Republicans, get only party names.

* Out of the overwhelming amount of data, the 1ogit function displays on screen
only the mean odds of selecting each option.

16There was only one Green candidate, Ralph Nader, so P(Nader) = P(Green).
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#include <apop.h>

apop_model * logit(char :querytail ){
apop_data xd = apop_query_to_mixed_data("mmmmmt", "
illegal_immigrants, aid_to_blacks, %s", querytail);
apop_text_to_factors(d, 0, 0);
apop_model =m = apop_estimate(d, apop_logit);
apop_data xev = apop_expected_value(d, m);

select 1, age, gender, \

[c BN o) SRV i T

9 apop_data_show(apop_data_summarize(ev));
10 return m;
11|}
12
13 | int main(){
14 apop_db_open("data—nes.db");
15 logit("favorite from choices");
16 logit("favorite from choices c, party p where p.person = c.favorite and p.party = 'R’");
17 logit("favorite from choices c, party p where p.person = c.favorite and p.party = 'D’");
18 logit("p.party from choices c, party p where p.person = c.favorite");
191}

Listing 8.9 Logit models with and without grouping of candidates by party. Online source:
candidates.c.

The example is not quite complete: we have the probability of choosing a
candidate given a party and the probability of choosing a party, but not the
product of the two. Fill in the remainder of the code by finding the predicted
Qs. 5 odds for each candidate for each observation.

You can count how often a person chose the candidate that the model says
the person is most likely to pick. Did the multilevel logit do a better job of
picking candidates than the standard one-level logit?

The simple concept of nesting together models is akin to McFadden’s nested logit
(McFadden, 1978). In fact, if these aren’t enough possibilities for you, see Gelman
& Hill (2007), who offer several more.

Describing snowflakes ~ Now consider the multilevel model as used to model pa-
rameters that are used as inputs to other models. This is
the typical form for when we want to use one of the stories from Chapter 7, like
the one about the Negative Binomial model or the one about the Poisson, but we
want the parameter to vary according to per-observation conditions. As above, the
probit model from the last section fits this description, as each agent has a cutoff
based on a linear model and that agent’s characteristics (i.e., the cutoff for person

1 1s x;3), and that cutoff is then fed into a parent Normal distribution.
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Because many of Apophenia’s model-handling functions can work with a model
that has only a log likelihood specified, the process of writing a log likelihood for
such a model is supremely simple:

Find the linear estimates of the parameters for each observation, probably using
apop_dot on the input matrix and input parameters.

Use the stock log_likelihood function to find the log likelihood of the outcome
data given the parameter estimates from the last step.

Listing 8.10 implements such a process. The first step is building the model, which
basically consists of reusing existing building blocks. The log likelihood function
is simply the two steps above: find X3, then run a for loop to estimate a separate
Poisson model for each row, based on the ¢th outcome variable and the ith Poisson
parameter. The main program declares the model, pulls the data, and then runs the
data through both the new model and the standard OLS model.

#include <apop.h>

double pplc_ll(apop_data =d, apop_model :child_params){
apop_data xlambdas = apop_dot(d, child_params—>parameters, 0);
apop_data xsmallset = apop_data_alloc(0, 1, 1);
double 11 = 0;
for(size_t i=0; i < d—>vector—>size; i ++){
double lambda = apop_data_get(lambdas, i, —1);
apop_model :pp = apop_model_set_parameters(apop_poisson, lambda);
apop_data_set(smallset, 0,0, apop_data_get(d, i, —1));
11 += pp—>log_likelihood(smallset, pp);
}
return 11;

}

int main(){
apop_model pplc = {"Poisson parent, linear child", —1,
Jog_likelihood= pplc_ll, .prep=apop_probit.prep};
apop_db_open("data—tattoo.db");
apop_data =d = apop_query_to_data("select \
tattoos.’ct tattoos ever had’ ct, tattoos.’year of birth’ yr, \
tattoos.’number of days drank alcohol in last 30 days’ booze \
from tattoos \
where yr+0.0 < 97 and ct+0.0 < 10 and booze notnull");
apop_data «d2 = apop_data_copy(d);
apop_model_show (apop_estimate(d, pplc));
apop_model_show (apop_estimate(d2, apop_ols));

Listing 8.10 A multilevel model. Online source: probitlevels.c.
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In this case, you can interpret the parameters in a similar manner to the discussion
of the probit and logit cases above. The parent parameter A is calculated as X3, so
a 1% shift in x; leads to a 3;% shift in A. Thus, after checking whether the param-
eters are significantly different from zero, you can directly compare the relative
magnitudes of the parameters to see the relative effect of a 1% shift in the various
inputs.

Statistics is a subjective field At this point, you have seen quite a range of mod-
els: you saw the distribution models from Chapter
7, the linear models from earlier in this chapter, and here you can see that you can
embed any one model into any other to form an infinite number of richer models.
Plus, there are the simulation and agent-based models, standing alone or nested
with a different type of model. The Metro data has already been modeled at least
four different ways (depending on how you count), and the male-to-female ratio
among counties in still more ways. Which model to choose?

A model is a subjective description of a situation, and many situations afford mul-
tiple perspectives. This is rare advice from a statistics textbook, but be creative.
We’re not living in the 1970s anymore, and we have the tools to tailor the model to
our perceptions of the world, instead of forcing our beliefs to fit a computationally
simple model. Try as many models as seem reasonable. Having many different
perspectives on the same situation only raises the odds that you will come away
with a true and correct understanding of the situation.

We also have some more objective tools at our disposal for selecting a model:
Chapter 10 will demonstrate a means of testing which of two disparate models has
a better fit to the data. For example, running the code in Listing 8.10 here reveals
that the likelihood of the alternative model is higher than the log likelihood of the
OLS model. You can use the test on page 353 to test whether the difference in
likelihood is truly significant.

» We can create models where the data used to estimate the parameters
in one model is generated by estimation in another model.

» One common use is clustering: develop a model for individual groups
(states, classrooms, families) and then discuss patterns among a set of
z groups (the country, school, or community).

» We can also use multiple levels to solve the snowflake problem, spec-
ifying a different probability of an event for every observation, but
still retaining a simple basic model of events. For example, the probit
is based on plugging the output from a standard linear form into a
Normal CDF.
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HYPOTHESIS TESTING WITH THE CLT

I’'m looking for the patterns in static: They start to make sense
the longer I'm at it.

—Gibbard (2003)

The purpose of descriptive statistics is to say something about the data you have.
The purpose of hypothesis testing is to say something about the data you don’t
have.

Say that you took a few samples from a population, maybe the height of several
individuals, and the mean of your sample measurements is &t = 175 cm. If you
did your sums right, then this is an indisputable, certain fact. But what is the mean
height of the population from which you drew your data set? To guess at the answer
to this question, you need to make some assumptions about how your data set
relates to the population from which it was drawn.

Statisticians have followed a number of threads to say something about data they
don’t have. Each starts with a data set and some assumptions about the environ-
ment and data generation method, and concludes with an output distribution that
can be compared to the data. Here is a list of some common assumptions. It is
impossible for it to be comprehensive, and many of the categories overlap, but it
offers a reasonable lay of the discussion in the following chapters.

Classical methods: Claim that the data was produced via a process that allows
application of the Central Limit Theorem.
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Maximum likelihood estimation: Write down a likelihood function for any given
data/parameter pairing, and find the most likely parameter given the data.

Bayesian analysis: Claim a distribution expressing prior beliefs about the parame-
ters and a likelihood function for the data on hand, then combine them to produce
a posterior distribution for the parameters.

Resampling methods: Claim that random draws from the data are comparable to
random draws from the population (the bootstrap principle), then generate a dis-
tribution via random draws from the data.

Kernel/smoothing methods: Claim that the histogram of the existing data is a lumpy
version of the true distribution; smooth the data to produce the output distribution.

All of these approaches will be discussed over the remainder of this book. This
chapter will focus on the first: making inferences about the population via use
of the Central Limit Theorem (CLT). The CLT describes the distribution of the
sample mean, X, and works regardless of the form of the underlying data. That is,
no matter the true distribution of the data, the distribution of the sample mean has
a very specific form—as long as n is large enough. For relatively small n, another
of the above methods of inference, such as the Monte Carlo methods discussed in
Chapter 11, may be preferable.

The CLT gives us a basis for the

Metadata

Metadata is data about data. Any statistic is a function
of data, so it is by definition metadata. Be careful not
to confuse the characteristics of the data and metadata;
for example, the variance of the mean is almost always
smaller than the variance of the base data. Like many
hypothesis tests, the Central Limit Theorem is primar-
ily concerned not with the distribution of the base data
set, but the distribution of the mean of the data set.

Normal distribution; we can then
produce variants based on the Nor-
mal. The square of a Normally dis-
tributed variable x will have a Chi
squared distribution (which is writ-
ten as 22 ~ x2, and read as:
the statistic is distributed as a Chi
squared with one degree of free-

dom). Dividing a Normal distribu-
tion by a transformed y? distribution produces another distribution (the ¢ distri-
bution), and the ratio of two x?’s produces an F distribution. Because all of this is
rooted in the CLT, the statements are true regardless of the vagaries of the under-
lying population that the statistics describe.

Having found a means of describing the distribution of the unobservable popula-
tion parameter (3, Section 9.3 will then look a number of simple tests regarding
(. They are direct applications of the above distributions, and so are often given
names like the ¢ test, X2 test, and F test.

The remainder of the chapter applies these building blocks in more complex struc-
tures to test hypotheses about more elaborate statistics. For example, if two inde-
pendent statistics (3 and 32 are ~ x2, then 31+ B2 ~ X3. So if the squared distance
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between a histogram segment and a hypothesized distribution is ~ 2, then the to-
tal distance between a thousand such segments and the hypothesized distribution
is ~ x3q00> and that total distance could thus be used to test the aggregate claim
that the data histogram is close to the distribution.

9.1 THE CENTRAL LIMIT THEOREM The CLT is the key piece of magic

for this chapter. Make a series of n

independent, identically distributed draws, x1, T3, ... T,, from a fixed underlying

population. The underlying population may have any nondegenerate distribution.

Let the mean of this sequence of draws be X, and the true mean of the overall
population be p. Then as n — oo,

\/g@ ~ N(0,1). 9.1.1)

That is, no matter the underlying population, the distribution of a mean of a series
of draws will approach a Normal distribution.

Put another way, if we repeated the procedure and drew k independent data sets
from the population and plotted a histogram of X1, ... ,Xy, we would eventually
see a familiar bell curve.

Because it is about the distribution of X, the CLT embodies a two-stage procedure:
we first produce the means of a series of k sets of draws—metadata from the base
distribution—and then seek the distribution of the metadata (the £ means), not the
data itself. Listing 9.1 demonstrates exactly how this two-stage procedure works,
and is worth understanding in detail.

* On line four (and the first panel of Figure 9.2), you can see the data from which the
program makes draws. It is nowhere near a bell curve: everything is either < 11 or
> 90.

* The inner loop of the make_draws function (the j-indexed loop) takes ct draws
from the CDF, and adds them to total. When total is divided by ct in the
line after the loop, it becomes the mean of ct draws from the distribution. The
outer loop (the i-indexed loop) records drawct such means. Line 23 plots the
distribution of this set of several means.

This double-loop is the base of the CLT, and is reflected in the assumptions about
data sets below. Say that we have drawct data points in our data set, and we are

1By ‘nondegenerate’ I mean that more than one outcome has positive probability. If your data is fifty items that
all have value 10, the mean of your samples will be 10 no matter how you slice them. However, if your sample
takes as few as two distinct values, the CLT will eventually provide you with a bell curve. You can verify this by
modifying the code in Listing 9.1. There are also theoretical distributions with infinite variance, which also cause
problems for the CLT, but this is of course not an issue for finite data sets.
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#include <apop.h>

int drawct = 10000;
double data[] = {1, 2, 3, 10, 11, 10, 11, 90, 91, 90, 91};

gsl_vector xmake_draws(int ct, gsl_rng =r){
double total;
gsl_vector out = gsl_vector_alloc(drawct);
for(int i=0; i< drawct; i++){
total = 0;
for(int j=0; j< ct; j++)
total += data[gsl_rng_uniform_int(r, sizeof(data)/sizeof(data[0]))];
gsl_vector_set(out, i, total/ct);
}

return out;

}

int main(){
gsl_rng xr = apop_rng_alloc(23);
for (int ct=1; ct<= 1018; ct+=3){
printf("set title "Mean of %i draws’\n", ct);
gsl_vector o =make_draws(ct, r);
apop_plot_histogram(o, 200, NULL);
gsl_vector_free(o);
printf("pause 0.6\n");

}

Listing 9.1 Take the mean of an increasing number of draws. The distribution of the means
approaches a Normal distribution. Online source: cltdemo.c.

claiming that they are Normally distributed. We presume that they are Normally
distributed (and not just constant) because a multitude of events have affected each
data point in some sort of haphazard way. That is, each individual data point went
through a process like the inner loop in lines 11-12, absorbing a large number of
random shocks. After all the little shocks, we gathered a single data point, as in
line 13.

The main function is intended to show that the CLT works best when each data
point is the mean of several draws from the base distribution. Line 22 repeatedly
calls make_draws. At the first call, ct==1, so make_draws makes 10,000 draws
from the distribution itself. The next call produces 10,000 data points where each
is the mean of four draws, and so on up to each data point being the mean of 1018
draws. The program dumps plots of the histograms to STDOUT, so run the program
via ./cltdemo | gnuplot.
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Figure 9.2 shows a few frames of output from the program. The first frame of the
animation is simply a set of spikes representing the base data. The second frame,
where each data point is the mean of four draws, has a series of humps, because
some draws have all large numbers, some have three large numbers and one small,
some have two of each, and so on. In the third frame, there are more combinations
possible, so there are more humps. As the frames progress, the humps merge to-
gether to form a familiar bell curve. This is a re-telling of the counting story on
page 237, which explained why the Binomial distribution approaches a bell curve
as well.

Means of 1 draw Means of 4 draws
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Figure 9.2 Sample outputs from the CLT demo in Listing 9.1
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Finally, notice the x-axes of the snapshots: the original data was plotted from 0—
100, but the scale in the fourth frame only goes from 30 to 45.2 So not only does
the distribution of X approach a bell curve, but it approaches a rather narrow bell
curve.

Modify line 4 to try different base distributions from which the system will
draw. [Thanks to the creative use of sizeof on line 12, you don’t need
to specify the size of the array. But see the footnote on page 125 on why
QQ.I this could be bad form.] Deleting the elements {1, 2, 3} produces some es-
pecially interesting patterns. What sort of data sets lead quickly to a bell
curve, and what data sets require averaging together thousands of elements
before achieving a decent approximation to the Normal?

Equation 9.1.1 put the story more formally: if we have a data set x with n elements,
true mean /i, and variance o2, then as n — 0o, (X — ) /% approaches a V' (0,1)
distribution. From that regularity of nature, we can derive all of the distributions to
follow.

Variants on variance  There is often confusion about when to use o2, o, or o /\/n,

so it is worth a quick review.

 For any data set or distribution, the variance is notated as o2. The formula for the
variance of a data setis > -, (x; — p1)%/n, so it makes sense that its symbol would
have a square included.

For the Normal distribution, the square root of the variance is known as the stan-
dard deviation, o, and is used to describe the ‘width’ of the distribution. For exam-
ple, just over 95% of a Normal distribution is within plus or minus two standard
deviations of the mean. Outside of the Normal distribution, o is rarely used.

Let us say that we have a data set x whose variance is o2. Then the variance of the
mean of X, var(X), is 0 /n, and the standard deviation of X is o /,/n. Once again,
it is important to bear in mind whether you are dealing with data or metadata.

» The Central Limit Theorem states that if each observation X; is the
mean of some draws from an iid distribution, then as n — oo, the
distribution of X; follows Equation 9.1.1.

» That is, if u is the overall mean and o is the square root of the vari-
ance of the set of X;’s, then (X; — 1)/ (o/4/n) approaches a A/(0,1)
distribution.

2If the shift in x-axis bothers you, you could ask Gnuplot to hold a constant scale by adding a line like
printf("set xrange [0:100]\n"); at the top of main.
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9.2 MEET THE GAUSSIAN FAMILY  With the exception of the Normal, the

distributions below are distinct from the

distributions of Section 7.2. The distributions there are typically used to describe

data that we have observed in the real world. The distributions here are aimed at
describing metadata, such as the means and variances of model parameters.

NORMAL The Normal distribution, presented on page 241, will also be used to de-

scribe some of the parameters derived below. The big problem with the

Normal distribution is that it depends on o, an unknown. It also depends on g,

but we are frequently testing a claim that x has some fixed value, so we assume

rather than derive it. Thus, much of the trickery in this section involves combining
distributions in ways such that the unknown o’s cancel out.

X2 DISTRIBUTION  The square of a variable with distribution A/(0, 1) has a x? distri-
bution with one degree of freedom, and the sum of n independent
x2-distributed variables is also ~ x2, with n degrees of freedom. Figure 9.3 shows

the distribution for a few different degrees of freedom.

o If X ~ N(0,1), then X% ~ 3.
o If X; ~N(0,1) fori=1,...,n, then X? +--- + X2 ~ 2.
o If X; ~ x2, then E(X;) = n.

The summation property is immensely useful, because we often have sums of vari-
ables to contend with. The most common case is the sample variance, which is a
sum of squares. Being a sum of squares of Normally-distributed elements, it is
easy to show that (Snedecor & Cochran, 1976, p 74)

2
M ~ s 9.2.1)

The numerator is the estimate of the sample variance times n — 1, so we can use
this to test that the sample variance equals a given o2, or establish a confidence
interval around an estimate of the variance. But we will see that it is useful for
much more than just describing variance estimates.

g

The sample variance is ~ x2_;, not x2, because given the first n — 1 data points
and the mean, the last one can actually be calculated from that data, meaning that
we effectively have the sum of n — 1 variables ~ x?, plus a no longer stochastic
constant. For more on degrees of freedom, see the sidebar on page 222.

It is worth mentioning the origin of the y? distribution as a common form. Pear-
son (1900) did a Taylor expansion of errors from what we now call a Multinomial
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Figure 9.3 The x? distribution for 3, 5, and 10 degrees of freedom. Being a sum of squares, it is
always greater than zero. As more elements are added in to the sum, the distribution
becomes less lopsided, and approaches a Normal distribution.

distribution, of the form k1x + kax? + k3x> + - - -, where the k;’s are appropriate
constants. He found that one can get satisfactory precision using only the x? term
of the series. The ANOVA family of tests is based on this approximation, because
those tests claim that the data are random draws that fit the story of the Multino-
mial distribution (as on page 240), so a sum of such distributions leads to a >
distribution as well.

STUDENT’S ¢ DISTRIBUTION Let x be a vector of data (such as the error terms in
a regression). Then

X— U .
6/\/5 n—1,
where 6 = x'x/n (a scalar). It might look as though this is just an approximation
of the Normal, with & replacing o, but it is not. To see where the form of the ¢
distribution came from, consider dividing the CLT equation (Equation 9.1.1),

XN, ),
-
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Figure 9.4 The ¢ distribution for 1, 3, and 10 degrees of freedom. For one degree of freedom, the
distribution has especially heavy tails—the variance is infinite—but as df grows, the
distribution approaches a A/(0, 1).

|62 Xo1

02 n—1

X — i |62\ X—p
e o) &/yn’

=

by

Then

The key stumbling block, the unknown value of o, cancels out from the numera-
tor and denominator. This is a work of genius by Mr. Student, because he could
calculate the exact shape of the distribution through straightforward manipulation
of the Normal and y? tables.> Some ¢ distributions for various degrees of freedom
are pictured in Figure 9.4.

* The ¢ distribution (i.e., n = 2) is called a Cauchy distribution.
* Asn — oo, the t,, distribution approaches the A/ (0, 1) distribution.

3Student is actually Mr. William Sealy Gosset, who published the ¢ distribution in 1908 based on his work as
an employee of the Guinness Brewery.
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Figure 9.5 The F distribution for various pairs of numerator/denominator degrees of freedom.

F DISTRIBUTION Instead of a ratio of an A/ and a \/P , you could also take the ra-

tio of two y2-distributed variables. The ¢’s in both denominators

would again cancel out, leaving a distribution that could be calculated from the x?
tables. This is the derivation and definition of the F' distribution:

[ /m]/ Xz /0] ~ F(m,n).

See Figure 9.5 for some sample F' distributions.

Also, consider the square of a ¢ distribution. The numerator of a t,, distribution is
a Normal distribution, so its square is a x7; the denominator is the square root of
a x2 distributed variable, so its square is a 2. Thus, the square of a t,,-distributed
variable has an F7 ,, distribution as well.

The F distribution allows us to construct tests comparing one y2-distributed vari-
able in the numerator to another x2-distributed variable in the denominator, and
either of these x? variables could be the sum of an arbitrary number of elements.
We can thus use the F' distribution to construct comparisons among relatively com-
plex statistics.

LOOKUP TABLES There are three things that cover most of what you will be doing
with a distribution: finding values of its PDF, values of its CDF,

and occasionally values of its inverse CDF. For a single quick number, see the
command-line program apop_lookup. For getting the the value of the PDFs at a
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given point from inside a program, here are the headers for the GSL’s PDF lookup
functions:

double gsl_ran_gaussian_pdf (double x, double sigma);
double gsl_ran_tdist_pdf (double x, double df);

double gsl_ran_chisq_pdf (double x, double df);

double gsl_ran_fdist_pdf (double x, double df1, double df2);

The prefix gsl_ran indicates that these functions are from the random number
generation module (#include <gsl/gsl_randist.h>). Random number gener-
ation itself will be delayed to Chapter 11.

The mean for the Normal function is fixed at zero, so modify X accordingly, e.g., if
X is drawn from a A/(7, 1), then ask the GSL for gsl_ran_gaussian_pdf (X-7,
1).

The next most common distribution calculation found in tables in the back of statis-
tics texts is calculating the CDF above or below a point. The P-functions below

calculate the CDF below a point, i.e. f;XOO f(y)dy, while the Q-functions calculate

the CDF above a point, i.e. | ;o f(y)dy. These sum to one, SO you can express any
area in terms of whichever function is clearest.

Here is the list of functions:

double gsl_cdf_gaussian_P (double x, double sigma);
double gsl_cdf_tdist_P (double x, double df);

double gsl_cdf_chisq_P (double x, double df);

double gsl_cdf_fdist_P (double x, double df1, double df2);

...plus all of these with the P replaced by a Q.

These will be used to test hypotheses, which in this context are claims like p > 0.
If you are shaky with hypothesis tests, see the next section. But if you are well-
versed with the traditional notation for hypothesis tests, notice that the overuse
of the letter P can easily lead to confusion. The gsl_cdf_gaussian_P function
gives what is known as the p-value for the one-tailed test that the mean is less
than zero, and the gs1_cdf_gaussian_Q function gives the infrequently-used g-
value for the same hypothesis. Put another way, if we find that the mean of our
Normally distributed data is 2.2 standard deviations below zero, then we reject the
one-tailed hypothesis that the mean is less than or equal to zero with confidence
1 - gsl_cdf_gaussian_P(2.2, 1) == gsl_cdf_gaussian_Q(2.2, 1).

For a hypothesis that ;1 > 0, everything is reversed. Here is a table that strives to
clarify which function goes with the confidence with which the null is rejected and
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which goes with the p-value, and when:

Hy:p>0 Hpg:p<O0
confidence | gsl_..._P gsl_..._Q
p-value gsl_..._Q gsl_..._P

For a centered two-tailed test, the p-value takes the form

2 % GSL_MIN(gsl_ran_gaussian_P(mu, sigma), gsl_ran_gaussian_Q(mu, sigma))
// or equivalently,
2 % gsl_ran_gaussian_Q(fabs(mu), sigma)

The confidence with which we fail to reject the two-tailed null is one minus this.

In the other direction, we may want to know where we will need to be to reject a
hypothesis with 95% certainty. For example, a value-at-risk oriented regulator will
want to know the worst one-day loss a bank can expect over a month. To formalize
the question, what is the value of the 1-in-20, or 5%, point on the CDF? Assuming
a Normal(u, o) distribution of profit and loss,* the bank will report a value at risk
of gsl_cdf_gaussian_Pinv (0.05, o) + u. Here are the requisite function
declarations:

double gsl_cdf_gaussian_Pinv (double p, double sigma);
double gsl_cdf_tdist_Pinv (double p, double df);

double gsl_cdf_chisq_Pinv (double p, double df);

double gsl_cdf_fdist_Pinv (double p, double df1, double df2);

... plus all of these with the Pinvs replaced by Qinvs.

The power of a test is the likelihood of successfully rejecting the null hy-
pothesis if there really is an effect in the data and the null should be rejected
(see page 335 for more). When designing an experiment, you will need to
estimate the power of a given design so you can decide whether to gather
Qg.z ten samples or a million.

I expect the mean of my Normally-distributed data to be 0.5, and 6 to be 1.1.
Given these assumptions, what must n be to reject the null hypothesis i = 0
with 99.9% confidence? What if the Normal approximation assumption is
deemed inapplicable, so the data is taken to be ¢-distributed?

4This assumption is false. Securities typically have leptokurtic (fat-tailed) returns; see page 230.
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\/

The square of a Normal distribution is a x? distribution.

\/

Both of these distributions rely on an unknown variance 0. We can
guess at o2, but then our confidence intervals are mere approxima-
tions as well.

z » The ratio of a Normal over the square root of a transformed x? dis-
tribution is a ¢ distribution. By taking the ratio of the form of the
two distributions, the unknown ¢’s cancel out, so a valid confidence
region can be constructed from a finite amount of data.

» The ratio of two x? distributions is an F distribution. Again, the un-
known o’s cancel out.

9.3 TESTING A HYPOTHESIS The chapter to this point has discussed how

certain manners of gathering data and aggre-

gating it into a statistic, such as taking its mean or taking the sum of squares, lead

to certain known distributions. Thus, if we have a statistic produced in such a man-

ner, we can evaluate the confidence with which a claim about that statistic is true.

For example, the mean of a data set can be transformed to something having a ¢

distribution (assuming the CLT holds). Similarly for the difference between the

means for two data sets, so a precise probability can be placed on claims about the
difference in two means.

CLAIMING A FIXED MEAN This test is sometimes called a z-test, but see the foot-
note below. The claim is that the mean of a column of
data is equal to p . The procedure to the test:

* Find the mean of the data f.

¢ Given the variance of the data set 6’3, estimate the standard deviation of the mean
via 6, = 04/4/n.

* For a one-tailed test, find the percentage of the ¢,,_; distribution that is over
| — |/ (6/+/n), ie., gsl_cdf_tdist_Q(fabs(umg — 1)/, n-1). Report
this as the p-value.

* For a two-tailed test, report twice the calculated number as the p-value.

Can we reject the claim Hg: The typical Puerto Rican county has over a
50% poverty rate? Use the county-level info from the poverty_pct_all

@9'3 column from the income table of data-census.db as your data set. Given
that the US Census Bureau defines poverty by the cost of living in the main
part of the United States, how would you interpret your result?
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Consider the parameters B from the OLS regression, which you will recall takes
the form 3 = (X'X)~!X'y. This is a more complex expression than a simple
mean, but each element of the ,3 vector, ﬁo, Bl, ..., can still be shown to have a
simple ¢ distribution. Thus, the standard test that a regression parameter (3; is sig-
nificantly different from zero is a variant of the test here regarding a ¢-distributed

scalar. The full details will be given in the section on regression tests below.

COMPARING THE MEAN Among the most common and simplest questions is: are
OF TWO SETS two sets of observations from the same process? Chapter
3 (page 109) already showed how to do a ¢ test to test

this claim.> You are encouraged to reread that section with an eye toward the test

procedure.

Reporting confidence

There is some tradition of reporting only whether the
p value of a test is greater than or less than some ar-
tificial threshold, such as p > 0.05 or p < 0.05. But
Gigerenzer (2004) cites Fisher (1956) as stating:

...no scientific worker has a fixed level
of significance at which from year to
year, and in all circumstances, he re-
jects hypotheses; he rather gives his
mind to each particular case in the light
of his evidence and his ideas.

Based on this observation, it would be better form
to list the actual confidence calculated, and allow the
reader to decide for herself whether the given value
provides small or great confidence in the results. The
error bars from Chapter 5 provide a convenient way to
do this.

The paired ¢ test is a common vari-
ant to the standard ¢ test. Say that the
data are paired in the sense that for
each element in the first set, there is
an element in the second set that is
related; put another way, this means
that for each element a;, there is a
corresponding element b; such that
the difference a; — b; makes real-
world sense. For example, we could
look at student scores on a test be-
fore a set of lessons and scores by
the same students after the lessons.
Then, rather than looking at the ¢
distribution for the before data and
comparing it to the ¢ distribution for

SThere is no standardized naming scheme for tests. A test basically consists of three components:

1. the context,
2. the statistic to be calculated, and
3. the distribution that the statistic is compared to.

Thus, there are tests with names like the paired data test (using component 1), sum of squares test (component 2),
or F test (component 3).

There is no correct way to name a procedure, but you are encouraged to avoid approach #3 where possible.
First, there are really only about four distributions (Normal, x2, ¢, F') that are used in most real-world applica-
tions, which means that approach #3 gives us only four names for myriad tests. Two people could both be talking
about running a chi-squared test and find that they are talking about entirely different contexts and statistics.

There is an odd anomaly regarding naming customs for the Normal distribution: rather than calling the statistic
to be compared to the Normal a normal statistic or Gaussian statistic, it is typically called a z statistic. There is a
z distribution, but it has nothing to do with the z test: it is one half the log of an F' distribution, and is no longer
commonly used because the F’ is slightly more convenient.

Finally, which distribution to use depends on the context and data: if a statistic has a ¢ distribution for small
n, then it approaches Normal as n — oo, so we could easily find ourselves in a situation where we are looking
up the statistic for what is called a ¢ test on the Normal distribution tables, or looking up a z statistic in the ¢
distribution tables.
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the after data, we could look at the vector of differences a; — b; and find the con-
fidence with which zero falls in the appropriate ¢ distribution. This is generally a
more powerful test, meaning that we are more likely to reject the null hypothesis of
no difference between the two vectors, and therefore the paired ¢ test is generally
preferable over the unpaired version (when it is applicable). Apophenia provides
the apop_paired_t_test function to run this test where appropriate.

X2-BASED TESTS One quick application of the y? distribution is for testing whether

a variance takes on a certain value. We posit that the denominator

of Equation 9.2.1 is a fixed number, and then check the x? tables for the given
degrees of freedom. This is a relatively rare use of the distribution.

A more common use is to take advantage of the summation property to combine
individual statistics into more elaborate tests. Any time we have statistics of the
form (observed — expected)?/expected, where (observed — expected) should be
Normally distributed, we can use Pearson’s Taylor series approximation to piece
together the statistics to form a y? test. There are examples of this form in the
section on ANOVA and goodness-of-fit testing below.

F-BASED TESTS Because of all the squaring that goes into a x? distributed statistic,

x and —x are indistinguishable, and so it becomes difficult to test

one-tailed claims of the form a > b. We could use the ¢ test for a one-tailed claim
about a single variable, or an F' test for a combination of multiple variables.

Let Hy be the claim that Q'3 = c. This is a surprisingly versatile hypothesis. For

B 1
example, say that 3 is a vector with three elements, | 32|, Q = [0, and c = [7].
B3 0
1
Then Hyis $y = 7.0r, Q = |—1| and ¢ = [0] gives Hy : 1 = f2. Or, say
0
0
we want to test Hy : o = 203. Thenlet Q = | 1 | and ¢ = 0. In ANOVA
—2
terminology, a hypothesis about a linear combination of coefficients is known as a

contrast.

To test all three hypotheses at once, simply stack them, one hypothesis to a row:

1 0 0 7
Q=11 -1 0| c=|o0]. (9.3.1)
0 1 -2 0
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Any linear (or affine) hypothesis having to do with a parameter 3 can be fit into
this form.

Define ¢ to be the number of constraints (rows of Q’), n the sample size, and
k the number of parameters to be estimated (3). As before, let X represent X
normalized so that each column but the first has mean zero, and the first column
is the constant vector 1. Now, if Hy is true and 3 was estimated using OLS, then
Q'8 ~ N(c,o?Q'(X’X)'Q).% and we can construct a y2-distributed linear com-
bination of the square of ¢ standard Normals via

(QB-9QXX)'Q '(QB-c)

Xg-
0-2 q

(9.3.2)

Alternatively, say that we are testing the value of the variance of the regression
error, and € ~ A/; then

S mP, (9.3.3)

As above, we can divide scaled versions of Equation 9.3.2 by Equation 9.3.3 to
give us a statistic with an ' distribution and no unknown o2 element:

n—k(QB-c)[QXX)1Q QB -c)

q €e

~ Fyni. (9.3.4)

If you have read this far, you know how to code all of the operations in Equation
9.3.4. But fortunately, Apophenia includes a function that will calculate it for you.
To do this, you will need to feed the function an estimate of 3 and an apop_-
data set indicating the set of contrasts you wish to test, whose vector element is
¢ and matrix element is Q'. As in Equation 9.3.1, each row of the input matrix
represents a hypothesis, so to test all three equality constraints at once, you could
use a vector/matrix pair like this:

double line = {
7,1,0,0
0,1,—1,0
0,0, 1, -2};
apop_data constr = apop_line_to_data(line, 3, 3, 3);

%For any other method, the form of the variance is Q’(the variance from Section 8.2)Q. See, e.g., Amemiya
(1994).
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The final [vector|matrix] form for the constraint matches the form used for con-
straints on pp 152—153, but in this case the constraints are all equalities.

Listing 9.6 presents a full example.

It runs a regression on the males-per-female data from page 267, so link this code
together with that code.

The constraint is only one condition: that 33 = 0.

The apop_F_test function takes in a set of regression results, because the F test
as commonly used is so closely married to OLS-type regressions.

#include "eigenbox.h"

int main(){
double line[] = {0, 0,0, 1};
apop_data xconstr = apop_line_to_data(line, 1, 1, 3);
apop_data xd = query_data();
apop_model xest = apop_estimate(d, apop_ols);
apop_model_show (est);
apop_data_show (apop_f_test(est, constr));

Listing 9.6 Run an F'-test on an already-run regression. Online source: ftest.c.

Here is a useful simplification. Let R? be the coefficient of determination (defined
further below), n be the number of data points, k be the number of parameters
(including the parameter for the constant term), and ¢ be the F'-statistic based on
Q =TIand c = 0. Then it can be shown that

— k)R?
% — 6. (9.3.5)

Verify the identity of Equation 9.3.5 using Equation 9.3.4 and these defini-
tions (from page 228):

Yest = X3 (the estimated value of y),

Q.. SSR=Y " (Yest — ¥)%,
SSE =¢'e, and
_ SSR

2_—
R ~ SSE’
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Statistical custom is based on the availability of computational shortcuts, so the F'
statistic of Equation 9.3.5 often appears in the default output of many regression
packages.” It is up to you to decide whether this particular test statistic is relevant
for the situation you are dealing with, but because it is a custom to report it, Apo-
phenia facilitates this hypothesis test by assuming it as the default when you send
in NULL variables, as in apop_F_test (estimate, NULL).

Verify the identity of Equation 9.3.5 by running a linear regression on the
Q data set you produced for the exercise on page 278, then passing the apop_-

9-5 model thus produced to apop_F_test to find the F' statistic and Apohenia’s
R?-finding function to find the SSE and SSR.

» The simplest hypothesis test regarding the parameters of a model is
the ¢ test. It claims that the mean of a data set is different from a given
value of . A special case is the claim that the mean of two data sets
differ.

z » The x? test allows the comparison of linear combinations of allegedly
Normal parameters. But since everything is squared to get the x? pa-
rameter, it can not test asymmetric one-tailed hypotheses.

» The F test provides full generality, and can test both one-tailed and
two-tailed hypotheses, and claims that several contrasts are simulta-
neously true.

9.4 ANOVA ANOVA is a contraction for analysis of variance, and is a catch-

all term for a variety of methods that aim to decompose a data

set’s variance into subcategories. Given a few variables and a few groups, is there

more variation between groups or within groups? Can the variation in a dependent
variable be attributed primarily to some independent variables more than others?

The descriptive portion of ANOVA techniques was covered back on pages 224—
227. This section covers the hypothesis testing part of ANOVA.

You may want to re-run metroanova.c, which first appeared as Listing 7.2 on
page 226. It produces an ANOVA table that includes several sums of squared er-
rors, and the ratio between them. At this point, you will recognize a sum of squared
errors as having a x? distribution (assuming the errors are Normally distributed),
and the df-weighted ratio of two sums of squared errors as being F'-distributed.

7Scheffé (1959) parodies the singular focus on this form by calling it “the” F test throughout the book.
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Thus, the traditional ANOVA table includes an F' test testing the claim that the
among-group variation is larger than the within-group variation, meaning that the
grouping explains a more-than-random amount of variation in the data.

Independence  The crosstab represents another form of grouping, where the rows

divide observations into the categories of one grouping, and the

columns divide the observations into categories of another. Are the two groupings
independent?

To give a concrete example, say that we have a two-by-two array of events, wherein
178 people chose between up/down and left/right:

Left Right X
Up 30 86 116
Down | 24 38 62
% 54 124 178

Is the incidence of Up/Down correlated to the incidence of Left/Right, or are the
two independent? Draws from the four boxes should follow a Multinomial dis-
tribution: if Up/Down were a Bernoulli draw with probabilities py and pp, and
Left/Right were a separate, independent Bernoulli draw with probabilities p;, and
PR, then the expected value of Up/Left would be Eyr;, = npypr, and similarly
for Epr, Eygr, and Eppg. Notating the actual incidence of Up/Left as Oy, = 30,
we can use the fact (from page 301) that the y? is a reasonable approximation of
errors from a Multinomial distribution to say that the observed variance over the
expected value (Opy — Eyz)?/Eyr ~ x2. Similarly for the other three cells, so

the sum
(Our — Eyr)? N (Our — Eur)? N (Opr — Epr)? N (Opr — Epr)? o2
EUL EUR EDL EDR !
9.4.1)

This expression has one degree of freedom because the horizontal set has two
elements and one mean =- one df; similarly for the vertical set; and 1 df x 1 df =
1 df. If there were three rows and six columns, there would be 2 x 5 = 10 df.

Listing 9.7 calculates this, once the long way and twice the short way. The calc_-
chi_squared function calculates Equation 9.4.1, using the one_chi_sq function
to calculate each individual term. Finally, main gathers the data and calls the above
functions. After all that, it also calls apop_test_anova_independence, which
does all this work for you on one line.

The distribution of means of a series of Binomial draws will approach a Normal as
n — 00, but for many situations, n is closer to around ten. For such a case, Fisher
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#include <apop.h>

double one_chi_sq(apop_data =d, int row, int col, int n){
APOP_ROW(d, row, vr);
APOP_COL(d, col, vc);
double rowexp = apop_vector_sum(vr)/n;
double colexp = apop_vector_sum(vc)/n;
double observed = apop_data_get(d, row, col);
double expected = n * rowexp * colexp;
return gsl_pow_2(observed — expected)/expected;

}

double calc_chi_squared(apop_data =d){
double total = 0;
int n = apop_matrix_sum(d—>matrix);
for (int row=0; row <d—>matrix—>sizel; row++)
for (int col=0; col <d—>matrix—>size2; col++)
total += one_chi_sq(d, row, col, n);
return total;

}

int main(){
double dataline[] = { 30,86,
24,38 };

apop_data xdata = apop_line_to_data(dataline, 0, 2, 2);

double stat, chisq;
stat = calc_chi_squared(data);
chisq = gsl_cdf_chisq_Q(stat, (data—>matrix—>sizel — 1)+ (data—>matrix—>size2 — 1));
printf("chi squared statistic: %g; p, Chi—squared: %g\n", stat,chisq);
apop_data_show(apop_test_anova_independence (data));
apop_data_show(apop_test_fisher_exact(data));

Listing 9.7 Pearson’s x test and Fisher’s Exact test. Online source: fisher.c.

(1922) calculated the probability of a given table using direct combinatorial com-
putation. The equations for the Fisher exact test are a mess, but the story is the same
as above—its null hypothesis is that Up/Down and Left/Right are independent—
and its calculation is trivial: just call apop_test_fisher_exact, as in the last
line of Listing 9.7.

% Scaling How would the calculation be affected if we replicated every count in

the data set into k counts, so Oy;; = kOyy, and E};; = kEyr? Then

(O} — El;1)?/El = k(Oyr, — Eyp)?/Eyyr. That s, scaling the data set by k

scales the test statistic by k as well. For almost any data set, there exists a k for
which the null hypothesis will be rejected.
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Across data sets, the scale can easily be different, and statistical significance will
be easier to achieve in the set with the larger scale. Generally, it is tenuous to as-
sert that a data set with a test statistic in the 96th percentile of the x? distribution
diverges from independence less than a data set whose test statistic is in the 99.9th
percentile. Use the test to establish whether the data rejects the null hypothesis,
then use other methods (a simple covariance will often do) to establish the magni-
tude of the difference.

For comparison, prior tests involving the mean are not as sensitive to scale. No-
tably, consider the ratio upon which the Central Limit Theorem is based, after
every element of the data vector x is scaled by k:

mean Y (kx — kX)/n
Vvar /n /> (kx — kX)?/n?
2.(r—%)

2z —x)?

All else equal, the ratio of the mean to /52 /n (often written /+/n) is not affected
by the scale of x, or even the number of elements in the data set, the way the x?
statistic above was affected by rescaling.

9.5 REGRESSION In the prior chapter, we used the linear regression model for

purely descriptive purposes, to find the best way to project y

onto X. If we add the assumption that € is Normally distributed, then we can also

test hypotheses regarding the parameter estimates. Given this assumption, it can

be shown that the coefficients on the independent variables (the 3 vector) have a ¢

distribution, and therefore the confidence with which an element of 3 differs from
any constant can be calculated (see, e.g., Greene (1990, p 158)).

The covariance matrix of B g is ¥ = 0?(X'X)~!, where o2 is the variance of
the regression’s error term: if € is the vector of errors, and there are n data points
and k regressors (including any constant column 1), then €e/(n — k) provides
an unbiased estimate of ¢2.® The estimated variance of (3; is the first diagonal
element, >.11; the estimated variance of (3 is the second diagonal element, >99;
and so on for all j;.

As is typical for a test of a statistic of the data, the count of degrees of freedom
is data points minus constraints; specifically, for n data points and k regression
parameters (including the one attached to the constant column), df = n — k.

8The form of the variance of the error term analogizes directly with the basic one-variable unbiased estimate
of variance, 3.7, (z; — X)2/(n — 1). First, the setup of OLS guarantees that € = 0, so ¢; — € = ¢;, and
thus €’ e matches the numerator in the basic formula. The denominator in all cases is the degrees of freedom; for
example, with k regressors and n data points, there are n — k degrees of freedom.
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Given the estimated variance 62 for 3; and any constant ¢, we could write down a
test statistic |3; — ¢|/J, and then check that statistic against the ¢, distribution
to test the claim that 8; = c. This test bears a close resemblance to the test for
the mean of a data set (also a ¢-distributed scalar statistic) presented on page 307.
If you have a joint hypotheses about contrasts among the elements of 3, you can
directly apply the above discussion of F' tests: just use the estimated mean of 3,
its covariance matrix Y, and n — k degrees of freedom.

Comparison with ANOVA  If a regression consists of nothing but dummy vari-
ables, then it can be shown that the process is equiv-
alent to the ANOVA-style categorization methods above.

Alaska is famously low on females, due to its many features that distin-
guish it from the lower 48 states. Create a dummy variable where 1=Alaska,

Q% O=other state, and regress males per female against both the Alaska dummy
and population density (and a constant 1, of course). Are one or both of the
independent variables significant?

Run an independence test on the two-by-two table whose row categories
are Alaska and not-Alaska, and whose column categories are males and
females. (Hint: you will need to combine the population and males per fe-
Q males columns to produce a count for each region, then sum over all re-
9.7 gions.)

How does the test differ if you compare the percent male/female or the
total count of males and females in each region? What changes in the story
underlying the test, and which version better represents the hypothesis?

OLS (along with its friends) has two real advantages over testing via crosstab
approaches like ANOVA. First, it readily handles continuous variables, which
ANOVA can handle only via approximation by rough categories.

Second, it allows the comparison of a vast number of variables. ANOVASs typically
top out at comparing two independent variables against one dependent, but an OLS
regression could project the dependent variable into a space of literally hundreds
of independent variables. In fact, if you run such a regression, you are basically
guaranteed that some number of those variables will be significant.

The multiple Freedman (1983) showed the dangers of data snooping by ran-
testing problem  domly generating a set of 51 columns of 100 random numbers
each.” He set one column to be the dependent variable to be ex-

9Data snooping used to also be called data mining, but that term has lost this meaning, and is now used to
refer to categorization techniques such as classification trees.
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plained, and the other fifty to be potential regressors. Using a simple exploratory
technique, he culled the fifty potential explanatory variables down to 15 variables.
He then ran a 15-variable regression, and found that 14 variables were significant
with a p-value better than 25%, and six were significant with p better than 5%.
Other tests of the regression also indicated a good fit. But the data was pure noise
by construction.

Recall from the first paragraph of this book that there are two goals of statistical
analysis, and they directly conflict. If a researcher spends too much time looking
for descriptive statistics about the data, then he is committing informal data snoop-
ing, akin to Freedman’s initial exploratory regression, and thus biases the chances
of rejecting a null in her favor. But it would be folly for the researcher to not check
the data for outliers or other quirks before running the regression, or to embark
upon producing an entirely new data set for every regression.

What is the correct balance? Statistics has no answer to this, though most statisti-
cians do. Those in the descriptive-oriented camp are very serious about the impor-
tance of good graphical displays and viewing the data every way possible, while
those in the testing-oriented camp believe that so much pre-test searching is simply
asking for apophenia.

Here is another spin on the issue: people who are testing exactly one hypothesis
tend to develop an affection for it, and become reluctant to reject their pet hypoth-
esis. Thus, research as conducted by humans may improve if there are multiple
hypotheses simultaneously competing. Chamberlin (1890, p 93) explains:

Love was long since represented as blind, and what is true in the per-
sonal realm is measurably true in the intellectual realm. ... The mo-
ment one has offered an original explanation for a phenomenon which
seems satisfactory, that moment affection for his intellectual child
springs into existence; and as the explanation grows into a definite
theory, his parental affections cluster about his intellectual offspring,
and it grows more and more dear to him, so that, while he holds it
seemingly tentative, it is still lovingly tentative. ... The mind lingers
with pleasure upon the facts that fall happily into the embrace of the
theory, and feels a natural coldness toward those that seem refrac-
tory. ... There springs up, also, an unconscious . .. pressing of the facts
to make them fit the theory. . .. The search for facts, the observation of
phenomena and their interpretation, are all dominated by affection for
the favored theory until it appears to its author or its advocate to have
been overwhelmingly established. The theory then rapidly rises to the
ruling position, and investigation, observation, and interpretation are
controlled and directed by it. From an unduly favored child, it readily
becomes master, and leads its author whithersoever it will.

His solution, as above, is to test multiple hypotheses simultaneously. “The inves-
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tigator thus becomes the parent of a family of hypotheses; and, by his parental
relation to all, he is forbidden to fasten his affections unduly upon any one.” He
also points out that maintaining multiple hypotheses allows for complex explana-
tions about how an outcome was partly caused by one factor, partly by another,
partly by another. After all, Nature is not compelled to conform to exactly one
hypothesis.

Apophenia’s model-as-object makes it very easy to test or mix diverse hypotheses,
as per Chamberlin’s suggestion, and you will see more methods of comparing
models in later chapters. But as the number of models grows, the odds of failing to
reject at least one model purely by chance grows as well. There is no hard-and fast
rule for determining the “correct” number of models to test; just bear in mind that
there is a tension among multiple goals and a balance to be struck between them.

Correcting for multiple testing  Moving on from informally poking at the data,
consider the case when the experiment’s basic de-
sign involves a systematic, fixed series of tests, like running a separate test for
every genetic marker among a list of a million. This is known as the multiple test-

ing problem, and there is a simple means of correcting for it.

Say that a number is drawn from [0, 1], and the draw is less than p with probability
p. Then the probability that a draw is greater than p is 1 — p, and the probability
that » independent draws are all greater than p is (1 — p)”, which can be reversed
to say that the probability that at least one of n independent draws is less than p is

1—(1=p"

Thus, the probability that, out of n tests with a fixed p-value, at least one will
indicate a positive resultis p = 1 — (1 — p)™. For example, with p = 0.05 and n =
100, the likelihood of rejecting the null at least once is 1 — (1 —0.05)'%° ~ 99.4%.

We can instead fix p at a value like 0.05 or 0.01, and reverse the above equation to
find the p-value for the individual tests that would lead to rejection of all nulls with
5% or 1% likelihood. A line or two of algebra will show that p = 1 — (1 — p)¥/™.
For n = 100 and p = 0.05, you would need to set the p-value for the individual
tests to 0.0005128. In the example of testing n = 1,000,000 genetic markers, if
the desired overall p = 0.05, then the p-value for the individual tests would be
5.129e—8.

There is a wonderfully simple approximation for the above expression: just let
p = p/n. For the first example above, this approximation is 0.05/100 = 0.0005;
for the second it is 0.05/1,000,000 = 5e—8. Both of these approximations are
within about +2.5% of the true value.
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Thus, we have a simple rule, known as the Bonferroni correction, for multiple tests:
just divide the desired overall p-value by the number of tests to get the appropriate
individual p-values. The correction is standard in biometrics but virtually unknown
in the social sciences. When reading papers with pages of regressions and no cor-
rections for multiple testing, you can easily apply this equation in your head, by
multiplying the reported individual p-value by the number of tests and comparing
that larger figure to the usual significance levels of 0.05 or 0.01.

» Because we know their expected mean and covariances, the regres-
sion parameters for OLS, IV, WLS, and other such models can be
tested individually using the standard ¢ test, or tested as a group via

z an F' test.

» When running a battery of several tests (based on a regression or oth-
erwise), use the Bonferroni correction to create a more stringent sig-
nificance level. The common form of calculating the more stringent
p-value is to simply divide the one-test p-value by the number of tests.

9.6 GOODNESS OF FIT  This section will present various ways to test claims of

the form the empirical distribution of the data matches

a certain theoretical distribution. For example, we often want to check that the
errors from a regression are reasonably close to a Normal distribution.

The visually appealing way to compare two distributions is the Q—Q plot, which
stands for quantile—quantile plot. The first (x,y) coordinate plotted is z1 = the
first percentile of your data and y; = the first percentile of the distribution you
are testing, the second is xo = the second percentile of your data and y, = the
second percentile of the ideal distribution, et cetera. To the extent that the data fits
the ideal distribution, the points will draw out the x = y line, while digressions
from the line will stand out.

The first half of Listing 9.9 presents an example, displaying a plot to check whe-
ther precipitation is Normally distributed. It gathers the data in the usual apop_-
query_to_data manner, estimates the closest-fitting Normal distribution, and
plots the percentiles of the data against the percentiles of the just-estimated dis-
tribution. As Figure 9.8 shows, the data set closely fits the Normal distribution
(though the extremes of the bottom tail is a bit more elongated and the extreme of
the top tail a bit less so).

Q Modify Listing 9.9 to test whether temperature or log of temperature is
9.8 Normally distributed. Would any other distribution fit better?
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Figure 9.8 Percentiles of precipitation on the y axis plotted against percentiles of the Normal distri-
bution along the x axis.

#include <apop.h>

int main(){
apop_db_open("data—climate.db");
apop_data «precip = apop_query_to_data("select PCP from precip");
apop_model =est = apop_estimate(precip, apop_normal);
Apop_col_t(precip, "PCP", v);
apop_plot_qq(v, =est, "outfile.gnuplot");

double var = apop_vector_var(v);
double skew = apop_vector_skew(v)/pow(var, 3/2);
double kurt = apop_vector_kurtosis(v)/gsl_pow_2(var) — 3;
double statistic = v—>size * (gsl_pow_2(skew)/6. + gsl_pow_2(kurt)/24.);
printf("The skew is %g, the normalized kurosis is %g, "
"and we reject the null that your data is Normal with %g confidence.\n",
skew, kurt, gsl_cdf_chisq_P(statistic, 2));
}

Listing 9.9 Pull data; estimate the Normal that best fits the data; plot the data against the ideal
distribution. The output is presented in Figure 9.8. Online source: qgplot.c.

HIGHER MOMENTS A slightly more rigorous alternative means of testing for Nor-

mality is to check the higher moments of the Normal distri-

bution (Bowman & Shenton, 1975; Kmenta, 1986, pp 266-267). There is a more
general chi-squared goodness-of-fit test for any distribution below.
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A Normal distribution has only two parameters, the mean and the standard de-
viation, and everything else about the Normal distribution is defined therefrom.
Notably, the third moment is zero, and the fourth moment is 304

We already have everything we need to calculate the distribution of these statistics.
The skew and kurtosis are both the mean of an iid process (recall their definitions
on page 230: a sum divided by n), so their square is ~ 2. Let s be the third
moment of the data divided by o and let « be the fourth moment divided by o*.

Then 9
s
Ly=n H

has a y? distribution with one degree of freedom, as does

e [52].

Some prefer to test both simultaneously using

2 (k—3)?
Low=n [E i T]

which has a x? distribution with two degrees of freedom.

The second half of Listing 9.9 translates this formula into code. Given the Q-Q
plot, it is no surprise that the test soundly fails to reject the null hypothesis that the
data is Normally distributed.

Another alternative, keeping with the theme of this book, would be to bootstrap
the variance of the kurtosis, which would let you find a confidence interval around
30* and state with some percentage of certainty that the kurtosis is or is not where
it should be; this suggestion is put into practice on page 365.

CHI-SQUARED GOODNESS-OF-FIT TEST Say that we have a histogram and a vec-

tor of points that we claim was drawn

from that histogram. It would be nice to test the confidence with which our claim
holds; this is a goodness-of-fit test.

Mathematically, it is simple. We have £ bins, and two histograms: hO holds the
histogram from which the draws were allegedly made, and h1 holds the data.'”
Then

10Recall from page 314 that scaling matters for a x test: the histograms representing two PDFs will each sum
to one (by definition), while a histogram representing the density of a population of size n will have bins summing
to n (by definition). That means that the X2 statistics for a test of the PDFs and a test of the distribution of counts
will be different, with the null more likely to be rejected for the distribution of counts. So when investigating a
histogram, be careful that you are testing the right hypothesis; claims about the distribution of a population are
typically best represented by a test of the PDFs (X = 1) rather than the counts (X = n).
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2
~XE_y. 6.1
h0—> bins][i] Xk ©6.1)

7

" (h0—> bins[i] — h1—> bins[i])?
=0

You will recognize this form as matching the (observed - expected)?/expected form
from the ANOVA tests earlier in this chapter.

On page 173, you plotted the leading digit of an arbitrary data set, and saw
that it sloped sharply down. Now use a chi-squared goodness of fit test to
formally check that your data set fits Equation 5.4.1.

* Write a function to produce a vector of nine elements, with the count
of elements in each slot equal to the number of data points with the
given leading digit. Don’t forget that vectors count from zero but you
want the first slot to represent leading digit one, and to rescale your

Qg . final vector so that it is a PMF (i.e., its elements sum to one).

* Equation 5.4.1 isn’t quite a PMF: the sum of its values from one to
nine isn’t one. Thus, you will need to get the total mass, and rescale
your calculations from Benford’s equation accordingly.

* Once you have two nine-element vectors of equal mass, you can di-
rectly apply Expression 9.6.1 to find the x? statistic and run the x?
test.

#include <apop.h>

int main(){
apop_db_open("data—climate.db");
apop_data xprecip = apop_query_to_data("select PCP from precip");
apop_model xest = apop_estimate(precip, apop_normal);
gsl_rng «r = apop_rng_alloc(0);
apop_model :xdatahist = apop_estimate(precip, apop_histogram);
apop_model =modelhist = apop_histogram_model_reset(datahist, est, 1e6, 1);
apop_data_show(apop_histograms_test_goodness_of_fit(datahist, modelhist));

— O 0 0NN R W=

—

Listing 9.10 The same precipitation data, another test. Online source: goodfit.c.

Listing 9.10 tests whether the precipitation data is Normally distributed using the
x2 goodness-of-fit test.

* Lines 1-6 are a repeat of the query and estimation from ggplot . c (page 320).
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* Line eight turns the input data into a histogram. Notice that it uses the same apop_-
estimate form as other models, because a histogram is just another means of
expressing a model.

* You can’t do a goodness-of-fit test on just any two histograms: the bins have to
match, in the sense that the range of each bin in the first histogram exactly matches
the range in the corresponding bin of the second. The easiest way to ensure that two
histograms match is to generate the second histogram using the first as a template,
which is what apop_histogram_model_reset does. If we wanted to compare
two vectors via this test, this line would use apop_histogram_vector_reset.

* The new histogram gets filled via random draws from the model, which means that
we need to give apop_histogram_model_reset the number of draws to make
(here, 1e6), and a gs1l_rng to provide random numbers. The use of the gsl_rng
is covered in full on page 357.

* By line ten, we have two histograms representing the data and the model, and they
are in sync. Thus, it is a simple matter to send the histograms to apop_histo-
grams_test_goodness_of_fit to calculate the statistic in Expression 9.6.1.

KOLMOGOROV’S Kolmogorov (1933) suggested considering the steps in a histogram
METHOD to be a Poisson process, and developed a test based upon this
parametrization [see also Conover (1980)]. Given two histograms
produced using one of the above-mentioned methods, apop_test_kolmogorov
finds the maximum difference in the CMFs and find the probability that such a
CMF would occur if both histograms were from the same base data set. Because
this test uses the ordering of the slices of the PMF, while the Chi-squared test does
not, this test generally has higher power.

Kolmogorov’s test serves as yet another test for Normality, because it can compare
a data set’s CDF to that of a Normal distribution.

Is GDP per capita log-normally distributed?
¢ Pull the log of GDP per capita data from the data-wb.db data set.
* Create a histogram (i.e., estimate an apop_histogram model).

* Fit a Normal distribution and use it to create a matching histogram
QQ.IO using apop_histogram_model_reset.

* Send the two histograms to apop_test_kolmogorov.

* How do the test results compare with those produced by apop_-
histograms_test_goodness_of_fit?
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How about precipitation? Figure 9.8 gave the strong suggestion that the data
is Normally distributed; modify the code from the last example to formally
test the hypothesis that the data set is drawn from a Normal distribution
using the Kolmogorov—Smirnov method.

» The Q-Q (quantile-to-quantile) plot gives a quick visual impression
of whether the distribution of the data matches that of a theoretical
distribution.

» We can test the claim that a data set is Normally distributed using
the fact that the skew and kurtosis of a Normal distribution are fixed
(given the mean and variance).

» More generally, we can compare any two distributions by dividing
them into bins and comparing the square of the deviation of one dis-
tribution from another via a x? test.

» The Kolmogorov—Smirnov test offers another method for compar-
ing two distributions, which typically has more power than the Chi-
squared method.
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MAXIMUM LIKELIHOOD ESTIMATION

Since the fabric of the universe is most perfect and the work of a most wise Creator,
nothing at all takes place in the universe in which some rule of maximum or minimum
does not appear.

—Leonhard Euler

Whether by divine design or human preference, problems involving the search for
optima are everywhere. To this point, most models have had closed-form solutions
for the optimal parameters, but if there is not a nice computational shortcut to
finding them, you will have to hunt for them directly. There are a variety of routines
to find optima, and Apophenia provides a consistent front-end to many of them via
its apop_maximum_likelihood function.

Given a distribution p(-), the value at one input, p(z), is local information: we
need to evaluate the function at only one point to write down the value. However,
the optimum of a function is global information, meaning that you need to know
the value of the distribution at every possible input from z = —oo up to = oo in
order to know where the optimum is located.

This chapter will begin with the simple mathematical theory behind maximum
likelihood estimation (MLE), and then confront the engineering question of how
we can find the global optimum of a function by gathering local information about
a small number of points. Once the prerequisites are in place, the remainder of the
chapter covers MLEs in practice, both for description and testing.

1 etter to Pierre-Louis Moreau de Maupertuis, c. 1740-1744, cited in Kline (1980, p 66).
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10.1 LOG LIKELIHOOD To this point, we have met many probability distri-
AND FRIENDS butions, whose PDFs were listed in Sections 7.2 and
9.2. This section takes such a probability distribution
P(X, 3) as given, and from that produces a few variant and derivative functions
that will prove to be easier to work with. Also, a reminder: there is a list of notation

for the book on page 12.

Let x1 and x2 be two independent, identical draws (iid) from a distribution. The
independence assumption means that the joint probability is the product of the
individual probabilities; that is, P({z1 and 22}, 3) = P(x1,8) - P(x2,3). The
assumption of identical distributions (i.e., that both are draws from the same dis-
tribution P(-, 3)) allows us to write this more neatly, as

P({zyand 25},8) = [] Plx:,B).

i={1,2}

A probability function gives the probability that we’d see the data that we have
given some parameters; a likelihood function is the probability that we’d see the
specified set of parameters given some observed data. The philosophical implica-
tions of this distinction will be discussed further below.

There are three basic transformations of the likelihood function that will appear
repeatedly, and are worth getting to know.

Define the log likelihood function as LL = In P(x, 3)|,, the score as its derivative
with respect to 3:

dlnP OLL
9B 9B

S = : = : ,
dlnP OLL
0Bn 0Bn

and the information matrix as the negation of derivative of the score with respect

to (3.

oS
I=——
B

LL ... O°LL

967 0B 1

9LL 9LL

861 ﬁn e 8/6727,
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An example: Bernoulli  Say that we have nine draws from a Bernoulli distribution,
which you will recall from page 237 means that each draw
is one with probability p and is zero with probability 1 — p, and say that in our case
five draws were ones and four were zeros. The likelihood of drawing five ones is
p°; the likelihood of drawing four zeros is (1 — p)*; putting them together via the
independence assumption, the likelihood of an arbitrary value of p given this data

set X is

P(X7p)‘:v = p5 : (1 _p)4'
The log likelihood is thus
LL(x,p) =51In(p) + 41In(1 — p).

The score, in this case a one-dimensional vector, is

5 4
S(x,p) = . ma

and the information value (a 1 x 1 matrix) is

(10.1.1)

) 4
eor) =t

Both intuitively and for a number of reasons discussed below, it makes sense to
focus on the most likely value of p—that is, the value that maximizes P(x, p) given
our observed data x. Since the log is a monotonic transformation, p maximizes
P(x,p) if and only if it maximizes LL(x,p). Recall from basic calculus that a
necessary condition for a smooth function f(x) to be at a maximum is that % =
0—in the case of LL(x, p), that S(x,p) = 0. Setting Equation 10.1.1 to zero and

solving for p gives p = 8.

But a zero derivative can indicate either a maximum or a minimum; to tell which,
look at the second derivative. If the second derivative is negative when the first
derivative is zero, then the first derivative is about to become negative—the func-
tion is beginning to dip downward. At this point, the function must be at a maxi-
mum and not a minimum.

Since the information matrix is defined as the negation of the score’s derivative,
we can check that we are at a maximum and not a minimum by verifying that the
information value is positive—and indeed it is: for p = 5/9, I ~ 4.05. In more
dimensions, the analog is that the information matrix must be positive definite; see
the exercise on page 269.

To summarize, given p = 8, P =~ 0.0020649, LL ~ —6.182, S = 0, and I ~ 4.05.
It is easy to check other values of p to verify that they produce lower probabilities
of observing the given data.
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Verify the above statements.

¢ Generate a data set whose matrix element includes five ones and four
zeros (in any order). Put the data set in a global variable.

* Produce an output model via apop_estimate (your_data, apop_-
bernoulli).

* Display the output model via apop_model_show; check that the prob-
Qw ) ability is as it should be (i.e., 5/9 = .555).

* Write a function that takes in an apop_data struct holding a vector
with one item, and returns the log likelihood of that parameter given
the global data, using apop_log_likelihood.

» Send that function to your plotafunction routine from page 191
(with the range [0, 1]) and verify that the log likelihood is at its highest
where the parameter is 5/9.

An example: Probit  Recall the Probit model from page 283. It specified that an
agent would act iff its utility from doing so is greater than a
Normally-distributed error term. That is, act with probability

8
P(x, B) = /_ N (y]0,1)dy,

where N (y|0, 1) indicates the standard Normal PDF at y (and so the integral is the
CDF up to x03).

Reversing this, let x* be the set of x’s that led to action and x” be the set that led
to non-action. Then the likelihood of 3 given the data set is

P B =[] Px"8) T[] (1 - PN.8).
€A 1EN

LL(x,8)l,=> WP 8)+> In(l—-Px,8).

i€A 1EN

By the way, the logit (Equation 8.3.1, page 284) tells the same story, but it simpli-
fies significantly, to
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LL(x,B)l, = > x'8 - (1+eP),

i€A Vi

where the first term counts only those who act, while the second includes every-
body. [Q: Verify the log likelihood using Equation 8.3.1.]

Unlike the binomial example above, we can not find the optimum of the log like-
lihood function for either the probit or logit using just a derivative and some quick
algebra. We will instead need to use a search method such as those discussed later
in this chapter.

% A DIGRESSION: THE The probability function has a frequentist interpre-

PHILOSOPHY OF NOTATION tation: if you give me a fixed distribution, the story

behind it, and a fixed parameter [, then after a few

million draws, = will occur P(z, 3)|4 - 100 percent of the time. The likelihood

function has no such interpretation, because we assume that the data was produced

using one model that had a fixed [, that we happen to be ignorant of. There is no
mysterious pool of 3’s from which ours was drawn with some probability.

Thus, the probability of = given 3 (and a model) is in many cases an objectively
verifiable fact; the likelihood of 8 given x (and a model) is a subjective construct
that facilitates various types of comparison among 3’s. The integral over all x is
always one (i.e., for any fixed 3, fv:c P(z,B)dx = 1). The integral over all 3 of
the likelihood function, however, could be anything.

Ronald Aylmer Fisher, the famed eugenicist and statistician whose techniques ap-
pear throughout this book, was vehement about keeping a clear distinction: ... [I]n
1922, I proposed the term ‘likelihood,” in view of the fact that, with respect to [the
parameter], it is not a probability, and does not obey the laws of probability, while
at the same time it bears to the problem of rational choice among the possible
values of [the parameter] a relation similar to that which probability bears to the
problem of predicting events in games of chance. ... Whereas, however, in relation
to psychological judgment, likelihood has some resemblance to probability, the
two concepts are wholly distinct. ...” (Fisher, 1934, p 287) See Pawitan (2001) for
more on the interpretation of likelihood functions.

But as a simple practical matter, the probability of = given fixed parameter (3 is
P(x,3), and the likelihood of (3 given fixed data z is the very same P(x, 3). At
the computer, there is no point writing down separate functions p(x, beta) and
likelihood(beta, x)—a single function will serve both purposes. Just fix x to
produce a likelihood function over (3, and fix 3 to get a probability distribution of
values of x.
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We have two choices for notation, both of which can lead to confusion. The first
is to use two distinct function names for probability and likelihood—P(x) and
L(x) are typical—which clarifies the philosophical differences and leaves it to the
reader to recognize that they are numerically identical, and that both are functions
of x and /3. The second option is to use a single function for both, which clarifies
the computational aspects, but leaves the reader to ponder the philosophical im-
plications of a single function that produces an objective probability distribution
when viewed one way and a subjective likelihood function when viewed the other
way.? Because this book is centrally focused on computation, it takes the second
approach of listing both probability and likelihood using the same P(x, 3) form.

MORE ON LL, S, ANDI The log of the likelihood function has a number of di-

vine properties, which add up to making the log likelihood

preferable to the plain likelihood in most cases—and wait until you see what the
score can do.

First, due to all that exponentiation in the distributions of Sections 7.2 and 9.2,
In P is often much easier to deal with, yet is equivalent to P(-) for most of our
purposes—notably, if we have found a maximum for one, the we have found a
maximum for the other.

Also, consider calculating an iid likelihood function given a thousand data points.
The probability of observing the data set will have the form 1—[212(10 P(x;). Since
each P(z;) € (0,1], this product is typically on the order of 1 x 107190, Ag
discussed on page 137, such a number is too delicate for a computer to readily
deal with. Taking logs, each value of p; is now a negative number (e.g., In(0.5) ~
—0.69 and In(0.1) &~ —2.3), and the product above is now a sum:

1000 1000

I [[] Pi)| =) In(Px)).
i=1 i=1

Thus, the log likelihood of our typical thousand-point data set is on the order of
—1000 instead of 1 x 1079 —much more robust and manageable. You saw an
example of these different scales with the nine-point sample in the Bernoulli ex-
ample, which had p ~ 0.002 but LL ~ —6.

Analytically, the maximum of the log likelihood function is useful for two reasons
with four names: the Cramér—Rao lower bound and the Neyman—Pearson lemma.
It all begins with this useful property of the score:*

2There are consistent means of describing subjective probability that accommodate both ways of slicing
P(xz,3). The subjectivist approach (closely related to the Bayesian approach) takes all views of P(z,3) as
existing only in our minds—no matter how you slice it, there need not be a physical interpretation. The axiomatic
approach, led by Ramsey, Savage, and de Finetti, posits a few rules that lead to ‘consistent’ subjective beliefs
when followed, but places no further constraints on either probability or likelihood. Again, once both probability
and likelihood are accepted as subjective beliefs, there is less reason to distinguish them notationally.

3 All proofs here will be in the case where (3 is a scalar. Proofs for the multidimensional case are analogous but
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Theorem 10.1.1. If P(x, [3) satisfies certain regularity conditions as described
in the footnote,* then for any statistic f(z),

IE.(f)
That is, the score is a sort of derivative machine: the expected value of the score
times a statistic is equivalent to the derivative of the expected value of the statistic.
Finding an optimum requires finding the point where the derivative is zero and the
second derivative is negative, and this theorem gives us an easy trick for finding
those derivatives. The next few pages will show how this trick is used.

When reading this theorem, it is worth recalling the sleight-of-notation from page
257: f(z) is a function only of the data, but £, (f(z)) (where z is produced using

a certain model and parameters) is a function only of the parameters.

xProof: The expected value of the score times the statistic is

Eu(S - f)= L S(8) () P(z, B)da

:/ Mf(:,;)p(x, )dz (10.1.2)
YV 86
BP{()zﬁ)
— g mf(g:)P(ﬁ,:ﬂ)dm (10.1.3)
OP(z, )

= ) e

_ 9 (fo f(@) Pz, B)de)
op
_ 9E:(f(2))
B

(10.1.4)

(10.1.5)

require more involved notation.

4Equation 10.1.4 of the proof uses the claim that IBE % dx = % J [ - Pdz. If we can’t reverse the integral
and derivative like this, none of this applies.

The common explanation for when the switch is valid is in the case of any exponential family; the definition
of an exponential family will not be covered in this book, but rest assured that it applies to the Normal, Gamma,
Beta, Binomial, Poisson, et cetera—just about every distribution but the Uniform.

But it also applies more generally: we need only uniform convergence of the PDF as its parameters go to any
given limit (Casella & Berger, 1990, Section 2.4). Roughly, this is satisfied for any PDF whose value and deriva-
tive are always finite. For those who prefer the exponential family story, note that any PDF can be approximated
arbitrarily closely by a sum of exponential-family distributions (Barron & Sheu, 1991), so for any distribution
that fails, there is an arbitrarily close distribution that works. For example, the Uniform|[31, B2] distribution fails
because of the infinite slope at either end, but a distribution with a steep slope up between 3; — le—10 and (51
and a steep slope down between (2 and B2 + le—10 works fine.
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The sequence of events consisted of substituting in the definition of the score
(Equation 10.1.2), then substituting the familiar form for the derivative of the log
(Equation 10.1.3), and canceling out a pair of P(x, /3)’s. At this point, the simple
weighting P(x) (first introduced on page 221) has been replaced with the weight-
ing dP(x). Before, if z1 was twice as likely as xs (i.e., P(x1) = 2P(z2)), then
f(z1) would get double weighting. Now, if the slope of P(z) at x; is twice as
steep as the slope at 9, then f(z1) gets double weighting.

The final steps state that, under the right conditions, the integral of f(x) using a
measure based on dP(x) is equivalent to the derivative of the integral of f(z) using
a measure based on P(x). Equation 10.1.4 switched the integral and derivative,
using the assumptions in the theorem’s footnote, and Equation 10.1.5 recognized
the integral as an expectation under the given probability density. ¢

Corollary 10.1.2.
E(S)=0.

Proof: Let the statistic f(z) be the trivial function f(z) = 1. Then Theorem 10.1.1
tells us that £(S - 1) = 90E(1)/08 = 0.

Verify that the expected value of the score is zero for a few of the distribu-

Q tions given in Chapter 7, such as the Exponential on page 248. (Hint: you

10.2 | will need to calculate the integral of the expected value of the score over the
range from zero to infinity; integration by parts will help.)

Lemma 10.1.3. The information equality

var(S) = E(S - S) = E(D).

xProof: The first half comes from the fact that var(S) = E(S-S) — E(S)- E(S5),
but we just saw that E(S) = 0.

9P (x,B)

For the second half, write out F/(I), using the expansion of S = <%> and the

usual rules for taking the derivative of a ratio.
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r 6P(m,ﬁ)

o2

9% In P(z, 3) B (P(xﬂ)>
E[ o5 ]‘E 5

[ Pz, )2 Ps) _ <6P<x,ﬁ>)2

_E op? \ op
(P(z,B))
P(z,3)
—_E[S- 5

92 P(x,8)

Q: Prove the final step, showing that £ %] = 0. (Hint: use the lessons from

the proof of Theorem 10.1.1 to write the expectation as an integral and switch the
integral and one of the derivatives.) ¢

The information equality will be computationally convenient because we can re-
place a variance, which can be hard to directly compute, with the square of a
derivative that we probably had to calculate anyway.

For the culmination of the sequence, we need the Cauchy—Schwarz inequality,
which first appeared on page 229. It said that the correlation between any two
variables ranges between —1 and 1. That is,

cov(fig) 4
var(g) var(f) —
cov(f,9)*
var(g) var(f) —
cov(f,9)*
var(g)

<wvar(f). (10.1.6)

Lemma 10.1.4. The Cramér—Rao lower bound

Let f(x,3) be any statistic, and assume a distribution P(x, 3) that meets the cri-
teria from the prior results. Then

2
-CE PR < vy ). (10.1.7)
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The proof consists of simply transforming the Cauchy—Schwarz inequality using
the above lemmas. Let g in Equation 10.1.6 be the score; then the equation expands
to

(Bx(f(x) - 8) = Eo(f (%) Ex(S))?
var(.9)
The left-hand side has three components, each of which can be simplified using
one of the above results:

<var(f(x)) (10.1.8)

E.(f(x,5)-S)=0f(x,3)/08, by Theorem 10.1.1.
Corollary 10.1.2 said E(.S) is zero, so the second half of the numerator disappears.
The information equality states that that var(S) = E(I).

Applying all these at once gives the Cramér—Rao lower bound.

Further, MLEs have a number of properties that let us further tailor the CRLB to
say still more.’ Let the statistic f(x) be the maximum likelihood estimate of the
parameter, M LE(x, [3).

MLEs can be biased for finite data sets, but can be shown to be asymptotically un-
biased. This means that for n sufficiently large, E(M LE(x,3)) = (. Therefore,

OMLE(x,3)/0p = 1, so the numerator on the left-hand side of Equation 10.1.7
is one.

It can be proven that maximum likelihood estimators actually achieve the CRLB,
meaning that in this case the inequality in Equation 10.1.7 is an equality.

The information matrix is additive: If one data set gives us I; and another gives us
II5, then the two together produce [y5 = I; 4 Io. For a set of iid draws, each draw
has the same amount of information (i.e., the expected information matrix, which
is a property of the distribution, not any one draw of data), so the total information
from n data points is nl.

The end result is the following form, which we can use to easily calculate the
covariance matrix of the MLE parameter estimates.

var(MLE(x,[3)) =

B, (T (10.1.9)

Equation 10.1.9 makes MLEs the cornerstone of statistics that they are. Given that
MLE:s achieve the CRLB for large n, they are asymptotically efficient, and if we
want to test the parameter estimates we find via a ¢ or F' test, there is a relatively

5See Casella & Berger (1990, pp 310-311) for formal proofs of the statements in this section.
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easy computation for finding the variances we would need to run such a test.> For
many models (simulations especially), we want to know whether the outcome is
sensitive to the exact value of a parameter, and the information matrix gives us a

sensitivity measure for each parameter.

HOW TO EVALUATE A TEST A hypothesis test can be fooled two ways: the hypoth-

esis could be true but the test rejects it, or the hypoth-
esis could be false but the test fails to reject it.

There is a balance to be struck be-
tween the two errors: as one rises,
the other falls. But not all tests are
born equal. If a hypothesis has a 50—
50 chance of being true, then the
coin-flip test, ‘heads, accept; tails,
reject’ gives us a 50% chance of
a Type I error and a 50% chance
of a Type II error, but in most sit-

Evaluation vocab

Here are some vocabulary terms; if you are in a stats
class right now, you will be tested on this:

Likelihood of a Type I error = «: rejecting the null
when it is true.

Likelihood of a Type II error = [3: accepting the null
when it is false.

Power = 1 — [3: the likelihood of rejecting a false
null.

Unbiased: (1 — (3) > « for all values of the parame-
ter. Le., you are less likely to accept the null when it is
false than when it is true.

Consistent: the power — 1 as n — oo.

uations there are tests where both
errors are significantly lower than
50%. By any measure we would

call those better tests than the coin-
flipping test.

A big help in distinguishing Type I from Type II error is that one minus the Type
IT error rate has the surprisingly descriptive name of power. To a high-power tele-
scope, every star is slightly different—some things that seem like stars are even
galaxies or planets. But to a low-power lens like the human eye, everything just
looks like a little dot. Similarly, a high-power test can detect distinctions where a
low-power test fails to reject the null hypothesis of no difference. Or, for the more
cynical: since most journals have limited interest in publishing null results, a high-
power test increases the odds that you will be able to publish results. As you can
imagine, researchers are very concerned with maximizing power.

THE NEYMAN-PEARSON LEMMA The Neyman—Pearson lemma (Neyman & Pear-

son, 1928a,b) states that a likelihood ratio test

will have the minimum possible Type II error—the maximum power—of any test

with a given level of «. After establishing this fact, we can select a Type I error

level and be confident that we did the best we could with the Type II errors by
using a likelihood ratio test.

50f course, if we run one of the tests from Chapter 9 derived from the CLT, then we need to make sure the
CLT holds for the maximum likelihood estimate of the statistic in question. This could be a problem for small
data sets; for large data sets or simulations based on millions of runs, it is less of a concern.
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Likelihood ratios  Say the cost of a test that correctly accepts or rejects the hy-

pothesis is zero, the cost to a Type I error is Cy, and the cost

to a Type II error is Cyy. Then it is sensible to reject Hy iff the expected cost

of rejecting is less than the expected cost of not rejecting. That is, reject Hy iff

CrP(Hy|x) < CrrP(H;|x). We can translate this cost-minimization rule into the
ratio of two likelihoods.

Recall Bayes’s rule from page 258:
P(B|A)P(A)
P(B)

To apply Bayes’s rule to the rejection test, set A = Hy and B = x, so P(A|B) =
P(Hy|x) and P(B|A) = P(x|Hy) (and similarly for H;). Then:

P(A|B) =

C1P(Ho|x) < CrrP(H|x) (10.1.10)
P(X‘HO)P(HO) P(X’Hl)P(Hl)
Cr P(X) <Crr P(X) (10.1.11)
P(x|H))

Inequality 10.1.10 is the rejection rule from above; Inequality 10.1.11 uses Bayes’s
rule to insert the likelihood functions; Inequality 10.1.12 does some cross-division,
canceling out the P(x)’s and defining the critical value c = C1P(H;)/Cr1 P(Hyp),
i.e., everything that doesn’t depend on x. If you tell me the shape of P(-|H;) and
P(:|Hp) and some number o € (0,1), then I can give you a value of ¢ such that
Inequality 10.1.12 is true with probability «.” The test will then be: gather the
data, calculate the likelihood ratio on the right-hand side of Inequality 10.1.12,
and reject Hy iff the inequality is true.

The Neyman—Pearson lemma states that this test is the ‘best’ in the sense that
for a Type I error fixed at o, the LR test minimizes the probability of a Type II
error.® So we can design any test we like by just fixing « at a value with which we
are comfortable (custom says to use 95 or 99%) and calculating a few likelihood
functions, and we are assured that we did the best we could regarding Type II
errors. Most standard tests can be expressed in a likelihood ratio form, and so
Type II errors pretty much never get mentioned, since they’re considered taken
care of.’

7 Alternatively, you could give me a ratio of costs C7 /Crr and I could again give you a value of c. Thus, one
could draw a relation between the relative costs and the choice of a.

8For a proof, see e.g. Amemiya (1994, pp 189—191).

9Every test has a Type I and Type II error, but thanks to the Neyman—Pearson Lemma, we just describe a test
using the Type I level, with phrases like a test with 5% p-value. The introductory chapter of Hunter & Schmidt
(2004) is an excellent essay on how such description can be severely misleading. The extreme-case test always
fail to reject the null has a 0% Type I error rate, but if the null hypothesis is false, then it is wrong 100% of the
time.
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» For any sufficiently well-specified model, you can find the probability
that a given data set was produced via the model.

» If the data set consists of independent and identically distributed el-
ements, then the likelihood is a product with one term for each data
point. For both computational and analytic reasons, the log likelihood
is easier to work with; the product then becomes a sum.

z » The parameters that maximize the likelihood function for a model (or

identically, maximize the log likelihood) will have the minimum vari-
ance among all unbiased estimators. The variance is a known quan-
tity, given by the Cramér—Rao lower bound.

» Type I and Type II errors are complementary: as one goes up, the
other generally goes down. However, given a Type I error level, differ-
ent tests will have different Type II error levels. The Neyman—Pearson
lemma guarantees that a likelihood ratio test has the minimum prob-
ability of Type II error for a fixed Type I error level.

10.2 DESCRIPTION: MAXIMUM  Apophenia provides one function to find a
LIKELIHOOD ESTIMATORS model’s optimum, apop_maximum_like-
lihood—but what a function it is. It pro-
vides a standardized interface to several types of optimization routines that take
very different approaches toward finding optima. You will have to provide a log
likelihood function, but if you are unable to provide the derivatives, the maximiza-
tion routines will find them for you. Since the Cramér—Rao lower bound tells us
the variance of a most-likely parameter, apop_maximum_likelihood will return
a parametrized apop_model with the variances, along with other useful informa-
tion. This section gives an overview of some standard optimization methods, and
how to choose among them to raise the odds that they will find an optimum for
your functions.

You may be wondering why you need to know these details. Isn’t finding the opti-
mum of a likelihood function a solved problem?

The answer is decidedly no. Most standard optimization algorithms are built to
work well with a smooth, closed-form, globally concave function, such as finding
the value of z that maximizes f(x) = —x2. If your function more-or-less meets
such conditions, the odds are good that the default optimization routine in any stats
package of your choosing will work fine. But anything that produces a likelihood
value could be a model: a simulation could be a model, where the likelihood is a
function of how well the model matches a real-world data set. A dynamic program-
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ming problem could be a model. The consumer choosing among goods at the end
of Chapter 4.7 was a model. If your model has a stochastic element, has multiple
equilibria, or otherwise fails to fulfill the expectation of being a simple globally
concave function, then you will need to tailor a method and settings around the
problem at hand.'’

1 | #include <apop.h>
2
3 | double sin_square(apop_data xdata, apop_model +m){
4 double x = apop_data_get(m—>parameters, 0, —1);
5 return —sin(x)*gsl_pow_2(x);
6}
7
8 | apop_model sin_sq_model ={"—sin(x) times x"2",1, .p = sin_square};
Listing 10.1 A model to be optimized. Online source: sinsq. c.
4 4
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Figure 10.2 Top row: The simplex method and conjugate gradients; bottom row: simulated annealing
and root search. [Online source: localmax_print.c]

10The problem of finding an optimum is so broad that there are large sections of optimization research that
this book does not mention. For example, there is the broad and active field of combinatorial optimization, which
covers questions like the optimal ordering of n elements given an optimization function (which is a problem with
n! options). See, e.g., Papadimitriou & Steiglitz (1998) for more on combinatorial optimization methods.
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#include <apop.h>
apop_model sin_sq_model;

void do_search(int m, char xname){

double p[] = {0};

double result;
Apop_settings_add(&sin_sq_model, apop_mle, starting_pt, p);
Apop_settings_add(&sin_sq_model, apop_mle, method, m);
apop_model xout = apop_maximum_likelihood(NULL, sin_sq_model);
result = gsl_vector_get(out—>parameters —>vector, 0);
printf("The %s algorithm found %g.\n", name, result);

}

int main(){
apop_opts.verbose ++;
Apop_settings_add_group(&sin_sq_model, apop_mle, &sin_sq_model);
do_search(APOP_SIMPLEX_NM, "N—M Simplex");
do_search(APOP_CG_FR, "F—R Conjugate gradient");
do_search(APOP_SIMAN, "Simulated annealing");
do_search(APOP_RF_NEWTON, "Root—finding");

}

Listing 10.3 Using apop_maximum_likelihood and four types of method to solve for a maximum.
Compile with sinsq.c. Online source: localmax.c.

Listing 10.1 presents a simple model, consisting of the equation —x2 sin(z). This
is a very simple equation, but it has an infinite number of local modes. As x — oo,
the value of the function at these modes rises in proportion to =2, so there is no
global maximum. Figure 10.2 shows various attempts to search the function, one
of which gives a very good picture of the shape of the curve.

On lines 3-06, the function is defined. Because the system is oriented toward data
analysis, the function takes in a data set and an apop_model holding the parame-
ters. In this case, the data set is simply ignored.

Line eight declares a new model with some of the information the MLE function
will need, like the name, the number of parameters (one) and the probability func-
tion.

Listing 10.3 does the optimization four ways.

The apop_model struct can hold an array of groups of settings. Line 17 adds to
the model a group of MLE-appropriate settings. That group includes things like the
starting point, method, tolerance, and many other details that you will see below.
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* Lines eight and nine change the starting_pt and method elements of the model’s
MLE settings group to p and m, respectively.

 All the real work is done by line ten, which calls the maximization. The subsequent
two lines interrogate the output.

* The main routine does the optimization with four different methods.

By inserting Apop_settings_add(&sin_sq_model, apop_mle, trace_path,
"outfile") somewhere around line eight or nine, the system writes down the
points it tests during its search for an optimum; you can then produce plots like
those in Figure 10.2. You can already see disparate styles among the four meth-
ods: the simplex and conjugate gradient methods are somewhat similar in this case,
but simulated annealing is much more exhaustive—you can clearly see the shape
of the curve—while the root search barely leaves zero before deciding that it is
close enough.

Chapter 11 will demonstrate another method of producing a picture of a function
via random walk, but in the meantime, simulated annealing and trace_path pro-
vide a pretty effective way to get a graph of a complex and unfamiliar function.

When you run the program, you will see that asking four different methods gives
you three different answers, which leads to an important lesson: never trust a sin-
gle optimization search. By redoing the optimization at different points with dif-
ferent methods, you can get a better idea of whether the optimum found is just a
local peak or the optimum for the entire function. See below for tips on restarting
optimizations.

METHODS OF FINDING Here is the problem: you want to find the maximum of

OPTIMA f(x), but only have time to evaluate the function and its

derivative at a limited number of points. For example, f(x)

could be a complex simulation that takes in a few parameters and runs for an hour
before spitting out a value, and you would like to have an answer this week.

Here are the methods that are currently supported by Apophenia. They are basi-
cally a standardization of the various routines provided by the GSL. In turn, the
GSL’s choice of optimization routines bears a close resemblance to those recom-
mended by Press ef al. (1988), so see that reference for a very thorough discussion
of how these algorithms work, or see below for some broad advice on picking
an algorithm. Also, Avriel (2003) provides a thorough, mathematician-oriented
overview of optimization, and Gill ez al. (1981) provides a more practical, modeler-
oriented overview of the same topics.
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Simplex method—Nelder—Mead For a d dimensional search, this method draws

[APOP_SIMPLEX_NM] a polygon with d + 1 corners and, at each step,

shifts the corner of the polygon with the small-

est function value to a new location, which may move the polygon or may contract

it to a smaller size. Eventually, the polygon should move to and shrink around the

maximum. When the average distance from the polygon midpoint to the d + 1
corners is less than tolerance, the algorithm returns the midpoint.

This method doesn’t require derivatives at all.

Conjugate gradient Including:
Polak—Ribiere [APOP_CG_PR]
Fletcher—Reeves [APOP_CG_FR]
Broyden-Fletcher—Goldfarb—Shanno [APOP_CG_BFGS]

Begin by picking a starting point and a direction, then find the minimum along that
single dimension, using a relatively simple one-dimensional minimization proce-
dure like Newton’s Method. Now you have a new point from which to start, and
the conjugate gradient method picks a new single line along which to search.

Given a direction vector dy, vector dg is orthogonal iff djdy = 0. Colloquially,
two orthogonal vectors are at right angles to each other. After doing an optimiza-
tion search along d;, it makes intuitive sense to do the next one-dimensional search
along an orthogonal vector. However, there are many situations where this search
strategy does not do very well—the optimal second direction is typically not at
right angles to the first.

Instead, a conjugate gradient satisfies dj Ady = 0, for some matrix A. Orthog-
onality is the special case where A = 1. For quadratic functions of the form
flx) = %x’ Ax — bx, a search along conjugate gradients will find the optimum
in as many steps as there are dimensions in A. However, your function probably
only approximates a quadratic form—and a different quadratic form at every point,
meaning that for approximations at points one and two, Ay # As. It is not neces-
sary to actually calculate A at any point, but the quality of the search depends on
how close to a quadratic form your function is; the further from quadratic, the less
effective the method.

Polak—Ribiere and Fletcher—Reeves differ only in their choice of method to build
the next gradient from the prior; Press et al. (1988) recommend Polak—Ribiere.

The BFGS method is slightly different, in that it maintains a running best guess
about the Hessian, and uses that for updating the gradients.!! However, the same

1 Formally, one could argue that this means that it is not a conjugate gradient method, but I class it with the
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general rules about its underlying assumptions hold: the closer your function is to
a fixed function with smooth derivatives, the better BFGS will do.

Here is the pseudocode for the three algorithms. The variables in teletype are
settings that can be tuned before calling the routine, as on lines 8 and 9 of Listing
10.3. For all routines, set verbose to 1 to see the progress of the search on screen.

Start at pg = starting_pt, and gradient vector go.
While (p; - g; < tolerance|p;||gi|)
Pick a new candidate point, p. = p; + ¢; - step_size/|g;|.
If pe > p;
Pi+1 < Pec
Else
Pi+1 < the minimum point on the line between p; and p,. (to
within tolerance'?).
Find g; 1 using a method-specific equation.

We are guaranteed that p; 1 # p; because we followed the gradient uphill. If the
function continues uphill in that direction, then p. will be the next point, but if the
function along that path goes uphill and then downhill, the next point will be in
between p; and p..

The step to calculate g; 1 is the only step that differs between the three methods.
In all three cases, it requires knowing derivatives of the function at the current
point. If your model has no dlog_likelihood function, then the system will use
a numerical approximation.

Root finding  Including:
Newton’s method [APOP_RF_NEWTON]
Hybrid method [APOP_RF_HYBRID]
Hybrid method; no internal scaling [APOP_RF_HYBRID_NOSCALE]

A root search finds the optimum of the function by searching for the point where
the first derivative of the function to be maximized is zero. Notice that this can’t
distinguish between maxima and minima, though for most likelihood functions,
the minima are at 3 = +00."?

FR and PR methods because all three routines bear a very close resemblance, and all share the same pseudocode.
2Do not confuse the tolerance in these algorithms with a promise (for example, the promise in a Taylor
expansion) that if the tolerance is 7 and the true value of the parameter is 3, then the MLE estimate will be such
that |SyLe — B < 7. There is no way to guarantee such a thing. Instead, the tolerance indicates when the
internal measure of change (for most algorithms, A f(/3)) is small enough to indicate convergence.
131n fact, it is worth making sure that your models do not have a divergent likelihood, where the likelihood
increases as 3 — oo or —oo. Divergent likelihoods are probably a sign of a misspecified model.
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Let f(x) be the function whose root we seek (e.g., the score), and let V f be the
matrix of its derivatives (e.g., the information matrix). Then one step in Newton’s
method follows

Tip1 — a — (V)" fla).

You may be familiar with the one-dimensional version, which begins at a point x1,
and follows the tangent at coordinate (1, f (1)) down to the z—axis; the equation
for this is o = z1 — f(x1)/f’(x1), which generalizes to the multidimensional
version above.

The hybrid edition of the algorithm imposes a region around the current point be-
yond which the algorithm does not venture. If the tangent sends the search toward
infinity, the algorithm follows the tangent only as far as the edge of the trust region.
The basic hybrid algorithm uses a trust region with a different scale for each di-
mension, which takes some extra gradient-calculating evaluations and could make
the trust region useless for ill-defined functions; the no-scaling version simply uses
the standard Euclidian distance between the current and proposed point.

The algorithm repeats until the function whose zero is sought (e.g., the score) has
a value less than tolerance.

Simulated annealing [APOP_SIMAN] A controlled random walk. As with the other

methods, the system tries a new point, and

if it is better, switches. Initially, the system is allowed to make large jumps, and

then with each iteration, the jumps get smaller, eventually converging. Also, there

is some decreasing probability that if the new point is less likely, it will still be

chosen. One reason for allowing jumps to less likely parameters is for situations

where there may be multiple local optima. Early in the random walk, the system

can readily jump from the neighborhood of one optimum to another; later it will

fine-tune its way toward the optimum. Other motivations for the transition rules
will be elucidated in the chapter on Monte Carlo methods.

Here is the algorithm in greater detail, with setting names in appropriate places:

Start with temp = t_initial
Let g «+ starting_point
While temp > t_min
Repeat the following iters_fixed_T times:
Draw a new point x;, at most step_size units away from x;_i.
Draw a random number r € [0, 1].
If f(@e) > f(@4-1)
Jump to the new point: z;41 «— 4.
Else if r < exp(—(x4—1 — x¢)/(k - temp))
Jump to the new point: z; 1 < 4.
Else remain at the old point: x¢y1 «— x¢_1.
Cool: Let temp «— temp/mu_t
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Unlike with the other methods, the number of points tested in a simulated anneal-
ing run is not dependent on the function: if you give it a specification that reaches
t_min in 4,000 steps, then that is exactly how many steps it will take. If you know
your model is globally convex (as are most standard probability functions), then
this method is overkill; if your model is a complex interaction, simulated annealing
may be your only bet. It does not use derivatives, so if the derivatives do not exist
or are ill-behaved, this is appropriate, but if they are available either analytically or
via computation, the methods that use derivative information will converge faster.

If your model is stochastic, then methods that build up a picture of the space (no-
tably conjugate gradient methods) could be fooled by a few early bad draws. Sim-
ulated annealing is memoryless, in the sense that the only inputs to the next deci-
sion to jump are the current point and the candidate. A few unrepresentative draws
could send the search in the wrong direction for a while, but with enough draws
the search could eventually meander back to the direction in which it should have
gone.

Global v local optima  As you saw in the case of —z? sin(x), none of the methods

guarantee that the optimum found is the global optimum,

since there is no way for a computer to have global knowledge of a function f(x)

for all x € (—o0, 00). One option is to restart the search from a variety of starting

points, in the hope that if there are multiple peaks, then different starting points
will rise to different peaks.

The simulated annealing algorithm deals well with multiple peaks, because its
search can easily jump from the neighborhood of one peak to that of another. In
fact, as the number of steps in the simulated annealing algorithm — oo, the algo-
rithm can be shown to converge to the global optimum with probability one. How-
ever, calculating an infinite number of steps tends to take an unreasonable amount
of time, so you will need to select a time-to-confidence trade-off appropriate to
your situation.

Lines 13 and 14 of Listing 10.3 set the key parameters of the method and the

Q starting point. Try various values of both. Which do a better job of jumping
10.3 | out toward the larger modes? [Bonus: rewrite the program to take command-

line switches using getopt so you can do this exercise from a batch file.]

The econ101 models from Chapter 4 provide the relatively rare situation
where we have an optimization and the analytic values. [Hopefully your
Q own simulations have at least one special case where this is also true.] This

104 | ig therefore a fine opportunity to try various methods, values of delta, step
size, tolerance, method, et cetera Do extreme prices or preferences create
problems, and under which optimization settings?




gsl_stats March 24, 2009

MAXIMUM LIKELIHOOD ESTIMATION 345

RESTARTING To reiterate a recommendation from above: never trust a single opti-
mization search. But there are a number of ways by which you can
order your multiple searches.

* You could start with a large step size and wide tolerance, so the search jumps
around the space quickly, then restart with smaller step size and tolerance to hone
in on a result.

* Along a similar vein, different search methods have different stopping criteria, so
switching between a simplex algorithm and a conjugate gradient algorithm, for
example, may lead to a better optimum.

 If you suspect there could be multiple local optima, then try different starting
points—either different extremes of the space, or randomly-generated points.

* If you are running a constrained optimization, and one of the constraints binds,
then there may be odd interactions between the penalty and the function being
optimized. Try a series of optimizations with the penalty declining toward zero, to
see if the optimum gets closer to the boundary.

* The apop_estimate_restart function will help you to run sequences of opti-
mizations; see the online reference for details.

» Given an appropriate apop_data set and apop_model, the apop_-
maximum_likelihood function will apply any of a number of
maximum-searching techniques to find the optimal parameters.

» No computational method can guarantee a global optimum, because

the computer can only gather local information about the function.
z Restarting the search in different locations may help to establish a
unique optimum or find multiple optima.

» You can try various methods in sequence using apop_estimate_-
restart. You can also use the restarting technique to do a coarse
search for the neighborhood of an optimum, and then a finer search
beginning where the coarse search ended.

10.3 MISSING DATA  Say that your data set is mostly complete, but has an NaN

in observation fifty, column three. When you run a re-

gression, the NaN’s propagate, and you wind up with NaN’s all over the parameter
estimates. How can you fill in the missing data?

We could turn this into an MLE problem: we seek the most likely values to fill in
for the NaN’s, based on some model of how the data was generated.
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Infant mortality Income
Missingness Missingness Infant mortality

Figure 10.4 Two different flows of causation. At left is non-ignorable missingness: the value of the
infant mortality statistic determines whether infant mortality data will be missing. At
right is MAR: low income causes high infant mortality, and causes infant mortality data
to be missing. [online source: mar.dot]

But first, we need to distinguish among three types of missingness. Data are miss-
ing completely at random (MCAR) when the incidence of missing data is uncor-
related to every variable in the data set. This is truly haphazard error: somebody
tripped over the meter’s power cord, or one of the surveyors was drunk. The cause
of the missing data is nowhere in the data set.

Data are missing at random (MAR) when the incidence of missing data in col-
umn ¢ is uncorrelated to the existing data in column ¢ once we condition on the
observed data in all other columns. For example, poor countries tend to have bad
demographic data, so the incidence of a missing infant mortality rate is correlated
to low GNP per capita. Once we have conditioned on GNP per capita, there is no
reason to expect that missingness is correlated to infant mortality. The cause of the
missing values in column ¢ is something in the data set, but not column ¢. As in
the right-hand diagram in Figure 10.4, there is no flow of causation from infant
mortality to missingness.

Conversely, say that governments are embarrassed by high infant mortality rates.
Statistics bureaux are under orders to measure the rate, but release the measure
only if it falls below a certain threshold. In this case, the incidence of missing data
is directly related to the value of the missing data. The cause of the missing data
is the value of the data. This is known as missing not at random (MNAR) or non-
ignorable missingness, and is a serious problem because it implies bias almost by
definition.

There are many methods for dealing with censored or otherwise non-ignorable
missingness discussed in many sources, such as Greene (1990). For a full discus-
sion of the many types of missing data, see Allison (2002).
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Listwise deletion  One option for dealing with NaN’s that are MCAR is listwise
deletion. The idea here is supremely simple: if a row is missing
data for any variable, then throw out the entire row. This is conceptually simple,
does not impose any additional structure or model on the data, and can be executed

in one line of code:

[apop_data «nan_free_data = apop_data_listwise_delete(dirty_data);

Alternatively, see page 105 for the syntax to do listwise deletion on the SQL side.

But listwise deletion isn’t always appropriate. As a worst-case situation, say that a
survey has a hundred questions, and everybody filled out exactly 99 of them. By
listwise deletion, we would throw out the entire data set.

But with listwise deletion, the data set is going to be shorter, meaning that we lose
information, and if data is MAR (not MCAR), then throwing out observations with
missing data means biasing the information among other variables. In the example
above, if we throw out countries with missing infant mortality data, we would
mostly be throwing out countries with low GDP per capita.

ML imputation  This is where maximum likelihood estimation comes in (Dempster

et al., 1977). Let the missing data be 3, and the existing data (with

holes) be X, as usual. Then our goal is to find the most likely value of 3. The first

step is to specify a model from which the data was allegedly generated, so that we

can evaluate the likelihood of any given 5. The norm is that the completed data

set has a Multivariate Normal distribution, meaning that the n columns of the data

are distributed as an n-dimensional bell curve with mean vector p and covariance

matrix . However, it may make sense for your data to take on any of a number of

other forms. But given a parametrized distribution, one could search for the data
points that are most likely to have occurred.

In the data-corruption.db database, you will find Transparency International’s
Corruption Perceptions Index from 2003-2006. Because the index depends on
about a dozen hard-to-gather measures, there are many missing data points. List-
ing 10.5 goes through the entire process of filling in those data points, by pulling
the data from the database, reducing it to an estimable subset via listwise deletion,
fitting a Multivariate Normal to the subset, and then filling in the NaN’s in the full
data set via maximum likelihood. It may run slowly: filling in about eighty NaN’s
means a search in an 80-dimensional space. For more missing data than this, you
are probably better off finding a means of dividing the data set or otherwise incre-
mentally filling in the blanks.

You are encouraged to look at the results and decide whether they seem plausible.
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#include <apop.h>

int main(){
apop_db_open("data—corruption.db");
apop_data xcorrupt = apop_db_to_crosstab("cpi", "country", "year", "
apop_data xclean = apop_data_listwise_delete(corrupt);
apop_model =mlv = apop_estimate(clean, apop_multivariate_normal);
apop_ml_imputation(corrupt, mlv);
apop_crosstab_to_db(corrupt, "cpi_clean", "country”, "year", "

score");

score");

Listing 10.5 Filling in NaN’s via a Multivariate Normal. Online source: corrupt.c.

For example, would you use the data for Yugoslavia? Is a Multivariate Normal the
most appropriate model of how the data was formed?

On lengthy surveys, few if any people successfully fill out the entire form. In the
worst case, we may have 100 questions, and all subjects answered 99 of them.
Listwise deletion would throw out every subject. In this case, the best bet is pair-
wise deletion: calculate the mean of each vector by just ignoring NaN’s, and the
covariance of each pair of columns by removing only those observations that have
an NaN for one of those two variables. Pairwise deletion can introduce odd biases
in the covariance matrix, so it should be used as a last resort.

10.4 TESTING WITH LIKELIHOODS In order to test a hypothesis regarding

a statistic, we need to have a means of

describing its theoretical distribution. When the statistic is an MLE, the standard

means of doing this is via two interlocking approximations: a Taylor expansion and

a Normal approximation. This is convenient because the Normal approximation

proves to be innocuous in many settings, and the Taylor expansion involves the

same cast of characters with which we have been dealing to this point—LL, S,
and 7.

USING THE INFORMATION MATRIX The Cramér—Rao lower bound gives us a value
for the variance of the parameters: the inverse
of the expected information matrix. Given a variance on each parameter, we can
do the same ¢ and F' tests as before.

It is even easier if we make one more approximation. The expected information
matrix is an expectation over all possible parameters, which means that it is a
property of the model, not of any one set of parameters. Conversely, the estimated
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information matrix is the derivative of the score around the most likely values of
the parameters. We can expect that it is different for different parameter estimates.

Efron & Hinkley (1978) found that for most of the applications they consider, the
inverse of the estimated information matrix is preferable as an estimator of the vari-
ance as the expected information matrix. For exponential family distributions, the
two are identical at the optimum. From a computational perspective, it is certainly
preferable to use the estimated information, because it is a local property of the
optimum, not a global property of the entire parameter space. Simulated annealing
does a decent job of sampling the entire space, but the other methods go out of
their way to not do so, meaning that we would need to execute a second round
of data-gathering to get variances. Apophenia’s maximum likelihood estimation
returns a covariance matrix constructed via the estimated information matrix.

The covariance matrix provides an estimate of the stability of each individual pa-
rameter, and allows us to test hypotheses about individual parameters (rather than
tests about the model as a whole, as done by the likelihood ratio methods discussed
below).!* However, there are a number of approximations that had to be made to
get to this point. Basically, by applying a ¢ test, we are assuming that a few million
draws of a parameter’s MLE (generated via a few million draws of new data) would
be asymptotically Normally distributed. We already encountered this assumption
earlier: when testing parameters of a linear regression we assume that the errors
are Normally distributed. So the same caveats apply, and if you have a means of
generating several data sets, you could test for Normality; if you do not, you could
use the methods that will be discussed in Chapter 11 to bootstrap a distribution;
or if you are working at a consulting firm, you could just assume that Normality
always holds.

There is no sample code for this section because you already know how to run a ¢
test given a statistic’s mean and its estimated variance.

USING LIKELIHOOD RATIOS We can use likelihood ratio (LR) tests to compare

models. For example, we could claim that one model

is just like another, but with the constraint that 35 = 0, and then test whether the

constraint is actually binding via the ratio of the likelihood with the constraint and

the likelihood without. Or, say that we can’t decide between using an OLS model

or a probit model; then the ratio of the likelihood of the two models can tell us the
confidence with which one is more likely than the other.

14In Klemens (2007), I discuss at length the utility of the variance of the MLE as a gauge of which of a
simulation’s parameters have a volatile effect on the outcome and which have little effect.



gsl_stats March 24, 2009

350 CHAPTER 10

A loose derivation  As intimated by the Neyman—Pearson lemma, the ratio of two

likelihoods is a good way to test a hypothesis. Given the ratio
of two likelihoods P; / P,, the log is the difference In(Py /Py) = LLy — LLo.

Now consider the Taylor expansion of a log likelihood function around B The
Taylor expansion is a common means of approximating a function f () via a series
of derivatives evaluated at a certain point. For example, the second-degree Taylor
expansion around seven would be f(z) ~ f(7)4(z—7)f (7)+(x—7)2f"(7)/2+e,
where € is an error term. The approximation is exactly correct at x = 7, and
decreasingly precise (meaning e gets larger) for values further from seven. In the
case of the log likelihood expanded around B , the Taylor expansion is

_ 32 .
L1(8) = £23) + 8 - Ar )+ TS nnn ) e

As per the definitions from the beginning of the chapter, the derivative in the sec-
ond term is the score, and the second derivative in the third term is —I. When B
is the optimum, the score is zero. Also, as is the norm with Taylor expansions, we
will assume € = 0. Then the expansion simplifies to

(8-5)
2

LL(B) = LL(B) — 1(3). (10.4.1)

Typically, the likelihood ratio test involves the ratio of an unrestricted model and
the same model with a constraint imposed. Let L L. be the constrained log likeli-
hood; then we can repeat Equation 10.4.1 with the constrained log likelihood:

Now the hypothesis: the constraint is not binding, and therefore both constrained
and unconstrained optimizations find the same value of 3. Then

~2(LL(B) = LLe(8)) =2LLe(f3) = 2LL(B) + (5 = B)°1(B) — (8 = B)*L(B)
= (8- 3? (13) - 1.(3)) (10.42)

The second equation follows from the first because having the same value for B

for constrained and unconstrained optimizations means that LL(3) = LL.(3).

But we still haven’t said anything about the distribution of —2(LL(3) — LL.(53)).
Consider the case of the Normal distribution with fixed o (so the only free param-
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eter is the mean w); there, the Score is

S, p) =Y (i — p)/o”. (10.4.3)
i
Q: Verify this by finding 0L L(x, 1) /0p using the probability distribution on page
241.

The right-hand side of Equation 10.4.3 takes the familiar mean-like form upon
which the CLT is based, and so is is Normally distributed. Since E(I) = E(S -
S), and a Normally-distributed statistic squared has a x? distribution, Expression
10.4.2 has a x? distribution.

And in fact, this holds for much more than a Normal likelihood function (Pawi-
tan, 2001, p 29). Say that there exists a transformation function ¢(z, 3) such that
P(z, () - t(x, ) is Normally distributed. Then

P($>ﬁ) ) t(ﬂj,ﬁ) P(ZL’,ﬁ)

Pc(‘rv ﬁ) : t(ZE, ﬁ) B Pc(ﬂi', ﬁ) .
Instead of canceling out the transformation here, we could also cancel it out in the
log likelihood step:

LL(ﬂj‘,ﬁ) + t(ZL',ﬁ) - LLc(x>ﬁ) - t(ZL',ﬁ) = LL(ﬂj‘,ﬁ) - LLc(x>ﬁ)

Either way, Expression 10.4.2 is the same with or without the transformation—
which means the untransformed version is also ~ 2. So provided the likelihood
function is sufficiently well-behaved that ¢(x, 3) could exist, we don’t have to
worry about deriving it. This is a specific case of the invariance principle of like-
lihood functions, that broadly says that transformations of the likelihood function
do not change the information embedded within the function.

This is what we can use to do the likelihood ratio tests that the Neyman—Pearson

lemma recommended. We find the log likelihood of the model in its unconstrained

and constrained forms, take two times the difference, and look up the result in the
2

x~ tables.

The LR test, constraint case  As above, the typical likelihood ratio test involves

the ratio of an unrestricted and a restricted model,

and a null hypothesis that the constraint is not binding. Let P be the (not-log,

plain) likelihood of the overall model, and P. be the likelihood of a model with K
restrictions, such as K parameters fixed as zero.

In this context, the above discussion becomes

P
—2In— = —2[InP —InP.] ~ x%. (10.4.4)
Fe
In modeling terms, the unrestricted model could be any of the models discussed
earlier, such as the apop_probit, apop_normal, or even apop_ols, because the
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OLS parameters (3¢1s = (X’X)~!Xy) can be shown to be identical to the max-
imum likelihood estimate of 3.

[c BN o) SRV I T
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#include "eigenbox.h"

double linear_constraint(apop_data « d, apop_model sm){
apop_data xconstr = apop_line_to_data((double[]) {0, 0,0, 1}, 1, 1, 3);
return apop_linear_constraint(m—>parameters—>vector, constr, 0);

}

void show_chi_squared_test(apop_model xunconstrained, apop_model xconstrained, int
constraints){
double statistic = 2 * (unconstrained —>llikelihood — constrained —>llikelihood);
double confidence = gsl_cdf_chisq_P(statistic, constraints);
printf("The Chi squared statistic is: %g, so reject the null of non—binding constraint
"with %g%% confidence.\n", statistic, confidence=100);

n

}

int main(){
apop_data xd = query_data();
apop_model sunconstr = apop_estimate(d, apop_ols);
apop_model_show (unconstr);

Apop_settings_add_group(&apop_ols, apop_mle, &apop_ols);
Apop_settings_add(&apop_ols, apop_mle, starting_pt, unconstr—>parameters —>vector—>
data);

Apop_settings_add(&apop_ols, apop_mle, use_score, 0);

Apop_settings_add(&apop_ols, apop_mle, step_size, le—3);

apop_ols.estimate = NULL;

apop_ols.constraint = linear_constraint;

apop_model :xconstr = apop_estimate(d, apop_ols);

printf("New parameters:\n");
apop_vector_show(constr—>parameters —>vector);

show_chi_squared_test(unconstr, constr, 1);

}

Listing 10.6 Comparing three different models using likelihood ratios: an OLS model, an OLS
model with constraint, and a logit model. Online source: lrtest.c.

Listing 10.6 presents an unconstrained and a constrained optimization. It uses the
query from page 267 that produces a data set whose outcome variable is males
per 100 females, and whose independent variables are population and median age.
The question is the coefficient on median age significant? can be rephrased to: if
we constrain the median age coefficient to zero, does that have a significant effect
on the log likelihood?

The unconstrained optimization, on line 17, is the ordinary least squares model
(which, as above, finds the MLE).
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* Lines 20-24 mangle the base OLS model into a constrained model estimated via
maximum likelihood. By setting the estimate element to NULL the estimation on
line 25 uses the default method, which is maximum likelihood estimation.

* The constraint function is on line 3, and it uses the apop_linear_constraint
function to test that an input vector satisfies a constraint expressed as an apop_-
data set of the type first introduced on page 152. In this case, the constraint is
0 < (33; since the unconstrained OLS estimation finds that 53 < 0, this is a binding
constraint.

* Line four uses a new syntactic trick: anonymous structures. The type-in-parens
form, (double []),looks like a type cast, and it basically acts that way, declaring
that the data in braces is a nameless array of doubles. The line is thus equivalent
to two lines of code, as at the top of the main routine in the ftest.c program on
page 311:

double tempvar[] = {0, 0,0, 1};
apop_line_to_data(tempvar, 1, 1, 3);

But we can get away with packing it all onto one line and not bothering with the
temp variable. When used in conjunction with designated initializers, anonymous
structs can either convey a lot of information onto one line or make the code an
unreadable mess, depending on your @sthetic preferences.

* By commenting out the constraint-setting on line 24, you will have an uncon-
strained model estimated via maximum likelihood, and can thus verify that the
OLS parameters and the MLE parameters are identical.

* You will recognize the function on line nine as a direct translation of Expression
10.4.4. 1t is thus a test of the claim that the constraint is not binding, and it rejects
the null with about the same confidence with which the ¢ test associated with the
linear regression rejected the null that the third parameter is zero.

* The statistic on line nine, LL — LL,, is always positive, because whatever opti-
mum the constrained optimization found could also be used by the unconstrained
model, and the unconstrained model could potentially find something with even
higher likelihood. If this term is negative, then it is a sign that the unconstrained
optimization is still far from the true optimum, so restart it with a new method,
new starting point, tighter tolerances, or other tweaks.

Be sure to compare the results of the test here with the results of the F' test on page
311.

The LR test, non-nested case The above form is a test of two nested models,
where one is a restricted form of the other, so un-

der the hypothesis of the nonbinding constraint, both can find the same estimate (5
and so both can conceivably arrive at the same log likelihood. If this is not the case,
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then the cancellation of the first part of the Taylor expansion in Equation 10.4.2
does not happen.

In this case (Cox, 1962; Vuong, 1989), the statistic and its distribution is
In % —F <ln B

P,
N

The denominator is simply the square root of the sample size. The first part of the
numerator is just LL; — LL9, with which we are very familiar at this point. The
expected value is more problematic, because it is a global value of the log likeli-
hoods, which we would conceivably arrive at by a probability-weighted integral of
LL(B) — LLy(3) over the entire space of 3s.

> ~N(0,1). (10.4.5)

Alternatively, we could just assume that it is zero. That is, the easiest test to run
with Expression 10.4.5 is the null hypothesis of no difference between the expected
value of the two logs.

#define TESTING
#include "dummies.c"

void show_normal_test(apop_model xunconstrained, apop_model :xconstrained, int n){
double statistic = (unconstrained —>llikelihood — constrained —>llikelihood)/sqrt(n);
double confidence = gsl_cdf_gaussian_P(fabs(statistic), 1); Zone—tailed.
printf("The Normal statistic is: %g, so reject the null of no difference between models "

"with %g%% confidence.\n", statistic, confidence=100);

}

int main(){
apop_db_open("data—metro.db");
apop_model +m0 = dummies(0);
apop_model +m1 = dummies(1);
show_normal_test(m0, m1, m0—>data—>matrix—>sizel);

}

Listing 10.7 Compare the two Metro ridership models from page 282 Online source: 1rnonnest.c.

Listing 10.7 reads in the code for the two OLS estimations of Washington Metro
ridersiop from page 282, one with a zero-one dummy and one with a dummy for
the year’s slope.

If you flip back to the dummies.c file, you will see that the main function is
wrapped by a preprocessor if-then statement: #ifndef TESTING. Because TESTING
is defined here, the main function in that file will be passed over.

Therefore, the next line can read in dummies. ¢ directly, without ending up with
two mains.
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The main function here simply estimates two models, and then calls the show_-
normal_test function, which is a translation of Expression 10.4.5 under the null
hypothesis that £(LLors — LLiggit) = 0.

Remember, a number of approximations underly both the nested and non-nested
LR tests. In the nested case, they are generally considered to be innocuous and are
rarely verified or even mentioned. For the non-nested probit and logit models, their
log likelihoods behave in a somewhat similar manner (as n — 00), so it is reason-
able to apply the non-nested statistic above. But for two radically different models,
like an OLS model versus an agent-based model, the approximations may start to
strain. You can directly compare the two log-likelihoods, and the test statistic will
give you a sense of the scale of the difference, but from there it is up to you to
decide what these statistics tell you about the two disparate models.
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MONTE CARLO

Monte Carlo (Italian and Spanish for Mount Carl) is a city in Monaco famous
for its casinos, and has more glamorous associations with its name than Reno or
Atlantic City.

Monte Carlo methods are thus about randomization: taking existing data and mak-
ing random transformations to learn more about it. But although the process in-
volves randomness, its outcome is not just the mere whim of the fates. At the
roulette table, a single player may come out ahead, but with millions of suckers
testing their luck, casinos find that even a 49-51 bet in their favor is a reliable
method of making money. Similarly, a single random transformation of the data
will no doubt produce a somehow distorted impression, but reapplying it thousands
or millions of times will present an increasingly accurate picture of the underlying
data.

This chapter will first look at the basics of random number generation. It will then
discuss the general process of describing parameters of a distribution, parameters
of a data set, or a distribution as a whole via Monte Carlo techniques. As a special
case, bootstrapping is a method for getting a variance out of data that, by all rights,
should not be able to give you a variance. Nonparametric methods also make a
return in this chapter, because shuffling and redrawing from the data can give you
a feel for the odds that some hypothesized event would have occurred; that is, we
can write hypothesis tests based on resampling from the data.
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gsl_rng apop_rng_alloc(int seed){
static int first_use = 1;
if (first_use){
first_use ——;
gsl_rng_env_setup();
}
gsl_rng =setme = gsl_rng_alloc(gsl_rng_taus2);
gsl_rng_set(setme, seed);
return setme;

Listing 11.1 Allocating and initializing a random number generator.

11.1 RANDOM NUMBER GENERATION  We need a stream of random num-
bers, but to get any programming
done, we need a replicable stream of random numbers.'

There are two places where you will need replication. The first is with debugging,
since you don’t want the segfault you are trying to track down to appear and dis-
appear every other run. The second is in reporting your results, because when a
colleague asks to see how you arrived at your numbers, you should be able to
reproduce them exactly.

Of course, using the same stream of numbers every time creates the possibility
of getting a lucky draw, where lucky can mean any of a number of things. The
compromise is to use a collection of deterministic streams of numbers that have no
apparent pattern, where each stream of numbers is indexed by its first value, the
seed.” The GSL implements such a process.

Listing 11.1 shows the innards of the apop_rng_alloc function from the Apo-
phenia library to initialize a gs1_rng. In all cases, the function takes in an integer,
and then sets up the random number generation (RNG) environment to produce
new numbers via the Tausworth routine. Fans of other RNG methods can check
the GSL documentation for setting up a gsl_rng with alternative algorithms. On
the first call, the function calls the gsl_rng_env_setup function to work some
internal magic in the GSL. Listings 11.6 and 11.7 below show an example using
this function.

11s it valid to call a replicable stream of seemingly random numbers random? Because such RNGs are arguably
not random, some prefer the term pseudorandom number generator (PRNG) to describe them. This question is
rooted in a philosophical question into which this book will not delve: what is the difference between perceived
randomness given some level of information and true randomness? See, e.g., Good (1972, pp 127-8).

ZFormally, the RNG produces only one stream, that eventually cycles around to the beginning. The seed simply
specifies where in the cycle to begin. But because the cycle is so long, there is little loss in thinking about each
seed producing a separate stream.

If you initialize one RNG stream with the value of another, then they are both at the same point in the cycle,
and they will follow in lock-step from then on. This is to be avoided; if you need a sequence of streams, you are
better off just using a simple list of seeds like 0, 1, 2, ....
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RANDOM NUMBER DISTRIBUTIONS Now that you have a random number gener-
ator, here are some functions that use it to
draw from all of your favorite distributions. Input an RNG as allocated above plus

the appropriate parameters, and the GSL will transform the RNG as necessary.

double gsl_ran_bernoulli (gsl_rng :r, double p);

double gsl_ran_beta (gsl_rng «r, double a, double b);
double gsl_ran_binomial (gsl_rng =1, double p, int n);
double gsl_ran_chisq (gsl_rng xr, double df);

double gsl_ran_fdist (gsl_rng =r, double df1, double df2);
double gsl_ran_gaussian (gsl_rng =r, double sigma);
double gsl_ran_tdist (gsl_rng =r, double df);

double gsl_ran_flat (gsl_rng =r, double a, double b);
double gsl_rng_uniform (gsl_rng =r);

 The flat distribution is a Uniform[A,B) distribution. The Uniform[0,1) distribution
gets its own no-options function, gsl_rng_uniform(r).

* The Gaussian draw assumes a mean of zero, so if you intend to draw from, e.g., a
N (7,2), then use gsl_ran_gaussian(r, 2) + 7.

* The apop_model struct includes a draw method that works like the above func-
tions to make random draws, and allows standardization with more exotic models
like the histogram below; see the example in Listing 11.5, page 361.

An example: the Beta distribution  The Beta distribution is wonderful for all sorts
of modeling, because it can describe such a

wide range of probability functions for a variable € [0, 1]. For example, you saw

it used as a prior on page 259. But its « and ( parameters may be difficult to
interpret; we are more used to the mean and variance. Thus, Apophenia provides

a convenience function, apop_beta_from_mean_var, that takes in y and o2 and
returns an appropriate Beta distribution, with the corresponding values of o and 3.

As you know, the variance of a Uniform[0, 1] is exactly %, which means that
the Beta distribution will never have a variance greater than 1—12 (and close to %,
perverse things may happen computationally for p % %).3 The mean of a function
that has positive density iff € [0, 1] must be € (0, 1). If you send apop_beta_-
from_mean_var values of y and o2 that are outside of these bounds, the function
will return GSL_NAN.

What does a Beta distribution with, say, u = %, o? = ﬁ = .04166 look like?

Listing 11.2 sets up an RNG, makes a million draws from a Beta distribution, and
plots the result.

3More trivia: the Uniform[0, 1] is symmetric, so its skew is zero. Its kurtosis is %.
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#include <apop.h>

int main(){
int draws = le7;
int bins = 100;
double mu = 0.492; /also try 3./8.
double sigmasq = 0.093; /also try 1./24.
gsl_rng =r = apop_rng_alloc(0);
apop_data «d = apop_data_alloc(0, draws, 1);
apop_model +m = apop_beta_from_mean_var(mu, sigmasq);
for (int i =0; i < draws; i++)
apop_draw(apop_data_ptr(d, i, 0), r, m);
Apop_settings_add_group(&apop_histogram, apop_histogram, d, bins)
apop_histogram_normalize(&apop_histogram);
apop_histogram_plot(&apop_histogram, NULL);
}

Listing 11.2 Building a picture of a distribution via random draws. Online source: drawbeta.c.

0.018 .
I U R 0.02 T
0.016 |/ \
, \ 0.018 -
0.014 |- \
0.012 |- (/ \ 0.016
Y,
= 001/ 4 =
B ! Z 0.014
A, 0.008 —{{ =4 A
0.006 . 0.012 |
0.004 I o
0.01 |- 4
0.002 |- N
0 | | | | | | | | | 0.008 | | | | | | | | |
0 0.10.20.30.40.50.60.70.80.9 1 0 0.10.20.30.40.50.60.70.80.9 1
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Figure 11.3 The flexible Beta distribution. Run via drawbeta | gnuplot.

Most of the code simply names constants; the first real action occurs on line 11,
where apop_beta_from_mean_var takes in x and o2 and returns an apop_model
representing a Beta distribution with the appropriate parameters.

In line 14, the data set 4 is filled with random draws from the model. The apop_-
draw function takes in a pointer-to-double as the first argument, and puts a value
in that location based on the RNG and model sent as the second and third argu-
ments. Thus, you will need to use apop_data_ptr, gsl_vector_ptr, or gsl_-
matrix_ptr with apop_draw to get a pointer to the right location. The slightly
awkward pointer syntax means that no copying or reallocation is necessary, so
there is less to slow down drawing millions of numbers.

The final few lines of code take the generic apop_histogram model, set it to use
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the data d and the given number of bins, normalize the histogram thus produced to
have a total density of one, and plot the result.

The output of this example (using 1e7 draws) is at left in Figure 11.3; by contrast,
the case where ;1 = 0.492, 02 = 0.093 is pictured at right.

Figure 11.4 A circle inscribed in a square. The ratio of the area of the circle to the area of the square
is /4. Online source: squarecircle.gnuplot.

As per Figure 11.4, when a circle is inscribed inside a square, the ratio of
the area of the circle to the square is 7 /4. Thus, if we randomly draw 100
points from the square, we expect 1007 /4 to fall within the circle.
Estimate 7 via random draws from a square. For ¢ in zero to about 1e8:

* Draw z; from a Uniform[—1,1] distribution; draw y; from a
Uniform[—1, 1] distribution.

Qll.l * Determine whether (x;, y;) falls within the unit circle, meaning that
,/x? + yz2 < 1 (which is equivalent to 27 + y2 < 1).

* Every 10,000 draws, display the proportion of draws inside the circle
times four. How close to 7 does the estimate come? (Hint: it may be
clearer to display fabs(M_PI - pi_estimate) instead of the esti-
mate itself.)
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DRAWING FROM YOUR OWN DATA  Another possibility, beyond drawing from fa-
mous distributions that your data theoretically
approximates, would be to draw from your actual data.

If your data are in a vector, then just draw a random index and return the value
at that index. Let r be an appropriately initialized gsl_rng, and let your_data
be a gsl_vector from which you would like to make draws. Then the following
one-liner would make a single draw:

[gsl_vector_get(your_data, gsl_rng_uniform_int(r, your_data—>size));

% Drawing from histograms  There are a few reasons for your data to be in a his-

togram form—a rough probability mass function—

like the ones used for plotting data in Chapter 5, for describing data in Chapter

7, for goodness of fit tests in Chapter 9, and as the output from the apop_update
function. Here, we will draw from them to produce artificial data sets.

1 | #include <apop.h>
2 | gsl_rng «r;
3
4| void plot_draws(apop_model =m, char *outfile){
5 int draws = 2e3;
6 apop_data =d = apop_data_alloc(0, draws,1);
7 for(size_t i=0; i < draws; i++)
8 apop_draw(apop_data_ptr(d, i, 0), r, m);
9 apop_model xh3 = apop_estimate(d, apop_histogram);
10 apop_histogram_print(h3, outfile);
11|}
12
13 | int main(){
14 r = apop_rng_alloc(1);
15 apop_db_open("data—wb.db");
16 apop_data +pops = apop_query_to_data("select population+0.0 p from pop where p>500");
17 apop_model :h = apop_estimate(pops, apop_histogram);
18 apop_histogram_print(h, "out.hist");
19 plot_draws(apop_estimate(pops, apop_lognormal), "lognormal_fit");
20 printf("set xrange [0:2e5]; set yrange [0:0.12]; \n \
21 plot “out.hist’ with boxes, ’lognormal_fit" with lines\n");
22|}

Listing 11.5 Draw from the actual histogram of country populations, and from the exponential
distribution that most closely fits. Online source: drawfrompop.c.

For example, say that we would like to generate communities whose populations
are distributed the way countries of the world are distributed. Listing 11.5 does
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this two ways. The simplest approach is to simply generate a histogram of world
populations and make draws from that histogram.

* Line 17 creates a filled histogram by filling the un-parametrized base apop_-
histogram model with a list of populations.

In some cases, there are simply not enough data for the job. The World Bank data
set lists 208 countries; if your simulation produces millions of communities, the
repetition of 208 numbers could produce odd effects. The solution presented here
is to estimate a Lognormal distribution, and then draw from that ideal distribution.
Line 21 does the model fit and then sends the output of the apop_estimate func-
tion to the plot_draws function, which makes a multitude of draws from the ideal
distribution, and then plots those. You can see that the result is smoother, without
the zero-entry bins that the real-world data has.

e Lines 7-8 fill column zero of d with data, then line 9 turns that data into a his-
togram.

» The easiest way to put two data sets on one plot is to write both of them to separate
files (lines 18 and 10), and then call those files from a Gnuplot script (lines 20-21).

x Seeding with the time  There are situations where a fixed seed is really not what

you want—you want different numbers every time you

run your program. The easiest solution is to seed using the time function. The

standard library function time (NULL) will return the number of seconds that have

elapsed since the beginning of 1970, which is roughly when UNIX and C were first

composed. As I write this, time returns 1,147,182,523—mnot a very good way to

tell the time. There are a number of functions that will turn this into hours, minutes,

or months; see any reference on C’s standard library (such as the GNU C Library

documentation) for details. But this illegible form provides the perfect seed for an
RNG, and you get a new one every second.

Listing 11.6, time.c, shows a sample program that produces ten draws from an
RNG seeded with the time. This is not industrial-strength random number gener-
ation, because patterns could conceivably slip in. For an example of the extreme
case, try compiling time. c, and run it continuously from the shell. In a Bourne-
family shell (what you are probably using on a POSIX system), try

[while true; do ./time; done

You should see the same numbers a few dozen times until the clock ticks over, and
then another stream repeated several times. [You can get your command prompt
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#include <time.h>
#include <apop.h>

int main(){
gsl_rng =r = apop_rng_alloc(time(NULL));
for (int i =0; i< 10; i++)
printf("%.3g\t", gsl_rng_uniform(r));
printf("\n");

Listing 11.6 Seeding an RNG using the time. Online source: time. c.

back using <ctrl-c>.] If you have multiple processors and run one simulation on
each, then runs that start in the same second will be replicating each other. Finally,
if you ever hope to debug this program, then you will need to write down the time
started so that you can replicate the runs that break:

//l assume the database is already open and has a one-column

//table named runs. The time is a long integer

//in the GNU standard library, so its printf tag is #1i.

long int right_now = time(NULL);

apop_query("insert into runs (%Ili);", right_now);

gsl_rng «r = apop_rng_alloc(right_now);

Caveats aside, if you just want to see some variety every time the program runs,
then seeding with the time works fine.

% The standard C RNG  If the GSL is not available, the standard C library in-
cludes a rand function to make random draws and an
srand function to set its seed. E.g.:

#include <stdlib.h>
srand(27);
printf("One draw from a U[0,1]: %g", rand()/(RAND_MAX +0.0));

The GSL’s RNGs are preferable for a few reasons. First, gsl_ran_max(r) is typ-
ically greater than RAND_MAX, giving you greater variation and precision. Second,
the C language standard specifies that there must be a rand function, but not how it
works, meaning two machines may give you different streams of random numbers
for the same seed.

Finally, rand gives your entire program exactly one stream of numbers, while you
can initialize many gs1_rngs that will be independent of each other. For example,
if you give every agent in a simulation its own RNG, you can re-run the simulation
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with one agent added or removed (probably at a breakpoint in GDB) and are guar-
anteed that the variation is due to the agent, not RNG shifts. Here is some sample
code to clarify how such a setup would be initialized:

typedef struct agent{
long int agent_number;
gsl_rng xr;

} agent;
void init_agent(agent *initme, int agent_no){

initme—>agent_number = agent_no;
initme—>r = apop_rng_init(agent_no);

» Random number generators produce a deterministic sequence of val-
ues. This is a good thing, because we could never debug a program or
replicate results without it. Change the stream by initializing it with a

z different seed.

» Given a random number generator, you can use it to draw from any
common distribution, from a histogram, or from a data set.

11.2 DESCRIPTION: FINDING For many statistic-distribution pairs, there ex-
STATISTICS FOR ists a closed-form solution for the statistic:
A DISTRIBUTION the kurtosis of a N (i, o) is 304, the vari-
ance of a Binomial distribution is np(1 — p),
et cetera. You can also take recourse in the Slutsky theorem, that says that given an
estimate r for some statistic p and a continuous function f(-), then f(r) is a valid
estimate of f(p). Thus, sums or products of means, variances, and so on are easy

to calculate as well.

However, we often find situations where we need a global value like a mean or
variance, but have no closed-form means of calculating that value. Even when
there is a closed-form theorem that begins in the limit as n — oo, it holds that. . .,
there is often evidence of the theorem falling flat for the few dozen data points
before us.

One way to calculate the expected value of a statistic f(-) given probability distri-
bution p(-) would be a numeric integral over the entire domain of the distribution.
For a resolution of 100,000 slices, write a loop to sum
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f(=500.00) - p(~500.00)  f(~499.99) - p(~499.99)
100, 000 100, 000
£(499.99) - p(499.99)  f(500.00) - p(500.00)
100, 000 100, 000

This can be effective, but there are some details to be hammered out: if your
distribution has a domain over (—oo, c0), should you integrate over [—3, 3] or
[—30, 30]? You must decide up-front how fine the resolution will be, because (bar-
ring some tricks) each resolution is a new calculation rather than a modification of
prior calculations. If you would like to take this approach, the GSL includes a set
of numerical integration functions.

Elf()lp()] =

Another approach is to evaluate f(-) at values randomly drawn from the distribu-
tion. Just as Listing 11.2 produced a nice picture of the Beta distribution by taking
enough random draws, a decent number of random draws can produce a good es-
timate of any desired statistic of the overall distribution. Values will, by definition,
appear in proportion to their likelihood, so the p(-) part takes care of itself. There
is no cutoff such that the tails of the distribution are assumed away. You can incre-
mentally monitor E[f ()] at 1,000 random draws, at 10,000, and so on, to see how
much more you are getting with the extra time.

An example: the kurtosis of a t distribution  You probably know that a ¢ distribu-

tion is much like a Normal distribu-

tion but with fatter tails, but probably not how much fatter those tails are. The

kurtosis of a vector is easy to calculate—just call apop_vector_kurtosis. By

taking a million or so draws from a ¢ distribution, we can produce a vector whose
values cover the distribution rather well, and then find the kurtosis of that vector.

Listing 11.7 shows a program to execute this procedure.

* The main function just sets up the header of the output table (see Table 11.8) and
calls one_df for each df.

e The for loop on lines 6-7 does the draws, storing them in the vector v.

* Once the vector is filled, line eight calculates the partially normalized kurtosis.
That is, it calculates raw kurtosis over variance squared; see the box on page 230
on the endless debate over how best to express kurtosis.

The closed-form formula for the partially-normalized kurtosis of a ¢ distribution
with df > 4 degrees of freedom is (3df — 6)/(df — 4). For df < 4, the kurtosis
is undefined, just as the variance is undefined for a Cauchy distribution (i.e., a ¢
distribution with df = 1). Atdf = 5, it is finite, and it monotonically decreases as
df continues upwards.
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#include <apop.h>

void one_df(int df, gsl_rng =r){
long int i, runct = 1e6;
gsl_vector v = gsl_vector_alloc(runct);
for (i=0; i< runct; i++)
gsl_vector_set(v, i, gsl_ran_tdist(r, df));
printf("%i\t %g", df, apop_vector_kurtosis(v)/gsl_pow_2(apop_vector_var(v)));
if (df > 4)
printf("\t%g", (3.xdf — 6.)/(df—4.));
printf("\n");
gsl_vector_free(v);

}

int main(){
int df, df_max = 31;
gsl_rng =1 = apop_rng_alloc(0);
printf("df\t k (est)\t k (actual)\n");
for (df=1; df< df max; df++)
one_df(df, r);
}

Listing 11.7 Monte Carlo calculation of kurtoses for the ¢ distribution family. Online source:
tdistkurtosis.c.

Table 11.8 shows an excerpt from the simulation output, along with the true kur-
tosis.

The exact format for the variance of the estimate of kurtosis will not be given here
(Q: use the methods here to find it), but it falls with df: with df < 4, we may
as well take the variance of the kurtosis estimate as infinite, and it shrinks as df
grows. Correspondingly, the bootstrap estimates of the kurtosis are unreliable for
df = 5 or 6, but are more consistent for df over a few dozen. You can check this
by re-running the program with different seeds (e.g., replacing the zero seed on
line 17 of the code with time (NULL)).

» By making random draws from a model, we can make statements
about global properties of the model that improve in accuracy as the
number of draws — oo.

» The variance of the Monte Carlo estimation of a parameter tends
to mirror the variance of the underlying parameter. The maximum
likelihood estimator for a parameter achieves the Cramér—Rao lower
bound, so the variance of the Monte Carlo estimate will be larger
(perhaps significantly so).
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df k(est) k (analytic)
1 183640
2 5426.32
3 62.8055
4 19.2416
5 85952 9
6 6.00039 6
7 492161 5
8 452638 4.5
9 417413 4.2
10 4.00678 4
15 3.55957 3.54545
20 3.37705 3.375
25 3.281 3.28571
30 3.23014 3.23077

Table 11.8 The fatness of the tails of ¢ distributions at various df.

11.3 INFERENCE: FINDING The ¢ distribution example made random draws
STATISTICS FOR A from a closed-form distribution, in order to pro-
PARAMETER duce an estimate of a function of the distribu-

tion parameters. Conversely, say that we want
to estimate a function of the data, such as the variance of the mean of a data set,
var(ji(X)). We have only one data set before us, but we can make random draws
from X to produce several values of the statistic /(X ), where X, represents a ran-
dom draw from X, and then estimate the variance of those draws. This is known
as the bootstrap method of estimating a variance.

BOOTSTRAPPING THE STANDARD ERROR The core of the bootstrap is a simple
algorithm:

Repeat the following m times:
Let X be n elements randomly drawn from the data, with replacement.
Write down the statistic(s) 5(X).

Find the standard error of the m, values of 3(X).

This algorithm bears some resemblance to the steps demonstrated by the CLT
demo in Listing 9.1 (page 298): draw m iid samples, find a statistic like the mean
of each, and then look at the distribution of the several statistics (rather than the
underlying data itself). So if B(X) is a mean-like statistic (involving a sum over
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n), then the CLT applies directly, and the artificial statistic approaches a Normal
distribution. Thus, it makes sense to apply the usual Normal distribution-based test
to test hypotheses about the true value of 3.

#include "oneboot.h"

int main(){
int rep_ct = 10000;
gsl_rng xr = apop_rng_alloc(0);
apop_db_open("data—census.db");
gsl_vector xbase_data = apop_query_to_vector("select in_per_capita from income where
sumlevel+0.0 =40");
double RI = apop_query_to_float("select in_per_capita from income where sumlevel+0.0
=40 and geo_id2+0.0=44");
gsl_vector xboot_sample = gsl_vector_alloc(base_data—>size);
gsl_vector =replications = gsl_vector_alloc(rep_ct);
for (int i=0; i< rep_ct; i++){
one_boot(base_data, r, boot_sample);
gsl_vector_set(replications, i, apop_mean(boot_sample));
}
double stderror = sqrt(apop_var(replications));
double mean = apop_mean(replications);
printf("mean: %g; standard error: %g; (RI—mean)/stderr: %g; p value: %g\n",
mean, stderror, (RI—mean)/stderror, 2:xgsl_cdf_gaussian_Q(fabs(RI—mean), stderror));

}

Listing 11.9 Bootstrapping the standard error of the variance in state incomes per capita. Online
source: databoot.c.

#include "oneboot.h"

void one_boot(gsl_vector xbase_data, gsl_rng =1, gsl_vector: boot_sample){
for (int i =0; i< boot_sample —>size; i++)
gsl_vector_set(boot_sample, i,
gsl_vector_get(base_data, gsl_rng_uniform_int(r, base_data—>size)));

Listing 11.10 A function to produce a bootstrap draw. Online source: oneboot. c.

Listings 11.10 and 11.9 shows how this algorithm is executed in code. It tests the
hypothesis that Rhode Island’s income per capita is different from the mean.

Lines 4-8 of Listing 11.9 are introductory material and the queries to pull the req-
uisite data. For Rhode Island, this is just a scalar, used in the test below, but for
the rest of the country, this is a vector of 52 numbers (one for each state, common-
wealth, district, and territory in the data).
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Lines 11-14 show the main loop repeated m times in the pseudocode above, which
makes the draws and then finds the mean of the draws.

Listing 11.10 is a function to make a single bootstrap draw, which will be used in
a few other scripts below. The one_boot function draws with replacement, which
simply requires repeatedly calling gsl_rng_uniform_int to get a random index
and then writing down the value at that index in the data vector.

Lines 15 and 16 of Listing 11.10 find the mean and standard error of the returned
data, and then lines 17-18 run the standard hypothesis test comparing the mean of
a Normal distribution to a scalar.

Recall the discussion on page 300 about the standard deviation of a data set, which
is the square root of its variance, o; and the standard deviation of the mean of a
data set, which is o /y/n. In this case, we are interested in the distribution of 5(X)
itself, not the distribution of E(5(X))s, so we use o instead of o //n.

Rewrite databoot. ¢ to calculate the standard error of base_data directly

Q (without bootstrapping), and test the same hypothesis using that standard
11.2
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error estimate rather than the bootstrapped version. Do you need to test
with your calculated value of & or with //n?

#include <apop.h>

int main(){
int draws = 5000, boots = 1000;
double mu = 1., sigma = 3.;
gsl_rng xr = apop_rng_alloc(2);
gsl_vector xd = gsl_vector_alloc(draws);
apop_model +m = apop_model_set_parameters(apop_normal, mu, sigma);
apop_data =boot_stats = apop_data_alloc(0, boots, 2);
apop_name_add(boot_stats—>names, "mu", ’c’);
apop_name_add(boot_stats—>names, "sigma", ’c’);
for (int i =0; i< boots; i++){
for (int j =0; j< draws; j++)
apop_draw(gsl_vector_ptr(d, j), r, m);
apop_data_set(boot_stats, i, 0, apop_vector_mean(d));
apop_data_set(boot_stats, i, 1, sqrt(apop_vector_var(d)));
}
apop_data_show (apop_data_covariance (boot_stats));
printf("Actual:\n var(mu) %g\n", gsl_pow_2(sigma)/draws);
printf("var(sigma): %g\n", gsl_pow_2(sigma)/(2:xdraws));
}

Listing 11.11 Estimate the covariance matrix for the Normal distribution Online source:
normalboot.c.
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A Normal example  Say that we want to know the covariance matrix for the esti-
mates of the Normal distribution parameters, (i, ). We could
look it up and find that it is
0._2
.
0 =

but that would require effort and looking in books.* So instead we can write a
program like Listing 11.11 to generate the covariance for us. Running the program
will show that the computational method comes reasonably close to the analytic
value.

* The introductory material up to line 11 allocates a vector for the bootstrap sam-
ples and a data set for holding the mean and standard deviation of each bootstrap
sample.

¢ Instead of drawing permutations from a fixed data set, this version of the program
produces each artificial data vector via draws from the Normal distribution itself,
on lines 13—-14, and then lines 15—16 write down statistics for each data set.

* Inthis case, we are producing two statistics, ¢ and o, so line 18 finds the covariance
matrix rather than just a scalar variance.

On page 321, I mentioned that you could test the claim that the kurtosis of
a Normal distribution equals 30 via a bootstrap. Modify normalboot . c to
Qn. 5 | testthis hypothesis. Where the program currently finds means and variances
of the samples, find each sample’s kurtosis. Then run a ¢ test on the claim
that the mean of the vector of kurtoses is 30.

» To test a hypothesis about a model parameter, we need to have an
estimate of the parameter’s variance.

z » If there is no analytic way to find this variance, we can make multi-

ple draws from the data itself, calculate the parameter, and then find
the variance of that artificial set of parameters. The Central Limit
Theorem tells us that the artificial parameter set will approach a well-
behaved Normal distribution.

4E.g., Kmenta (1986, p 182). That text provides the covariance matrix for the parameters (fi, 52). The variance

.. . . 4
of fi is the same, but the variance of 62 = 2%
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11.4 DRAWING A DISTRIBUTION To this point, we have been searching for
global parameters of either a distribution
or a data set, but the output has been a single number or a small matrix. What if

we want to find the entire distribution?

We have at our disposal standard RNGs to draw from Normal or Uniform distribu-
tions, and this section will present are a few techniques to transform those draws
into draws from the distribution at hand. For the same reasons for which random
draws were preferable to brute-force numeric integration, it can be much more ef-
ficient to produce a picture of a distribution via random draws than via grid search:
the draws focus on the most likely points, the tails are not cut off at an arbitrary
limit, and a desired level of precision can be reached with less computation.

And remember, anything that produces a nonnegative univariate measure can be
read as a subjective likelihood function. For example, say that we have real-world
data about the distribution of firm sizes. The model on page 253 also gives us an
artificial distribution of firm sizes given input parameters such as the standard error
(currently hard-coded into the model’s growth function). Given a run, we could
find the distance d(o) between the actual distribution and the artificial. Notice that
it is a function of o, because every o produces a new output distribution and there-
fore a new distance to the actual. The most likely value of ¢ is that which produces
the smallest distance, so we could write down L(c) = 1/d(c), for example.’
Then we could use the methods in this chapter and the last to find the most likely
parameters, draw a picture of the likelihood function given the input parameters,
calculate the variance given the subjective likelihood function, or test hypotheses
given the subjective likelihood.

IMPORTANCE There are many means of making draws from one distribution to in-
SAMPLING form draws from another; Train (2003, Chapter 9) catalogs many of
them.

For example, importance sampling is a means of producing draws from a new
function using a well-known function for reference. Let f(-) be the function of
interest, and let g(-) be a well-known distribution like the Normal or Uniform. We
want to use the stock Normal or Uniform distribution RNGs to produce an RNG
for an arbitrary function.

For i = 1 to a few million:
Draw a new point, x;, from the reference distribution g(-).
Give the point weighting f(x;)/g(x;).
Bin the data points into a histogram (weighting each point appropriately).

SRecall the invariance principle from page 351, that basic transformations of the likelihood function don’t
change the data therein, so we don’t have to fret over the exact form of the subjective likelihood function, and
would get the same results using 1/d as using 1/d? or 1/(d + 0.1), for example.
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At the end of this, we have a histogram that is a valid representation of f(-), which
can be used for making draws, graphing the function, or calculating global infor-
mation.

What reference distribution should you use? Theoretically, any will do, but engi-
neering considerations advise that you pick a function that is reasonably close to
the one you are trying to draw from—you want the high-likelihood parts of g(-)
to match the high-likelihood parts of f(-). Soif f(-) is generally a bell curve, use
a Normal distribution; if it is focused near zero, use a Lognormal or Exponential;
and if you truly have no information, fall back to the Uniform (perhaps for a rough
exploratory search that will let you make a better choice).

MARKOV CHAIN MONTE CARLO Markov Chain Monte Carlo is an iterative al-

gorithm that starts at one state and has a rule

defining the likelihood of transitioning to any other given state from that initial

state—a Markov Chain. In the context here, the state is simply a possible value for

the parameter(s) being estimated. By jumping to a parameter value in proportion

to its likelihood, we can get a view of the probability density of the parameters.

The exact probability of jumping to another point is given a specific form to be
presented shortly.

This is primarily used for Bayesian updating, so let us review the setup of that
method. The analysis begins with a prior distribution expressing current beliefs
about the parameters, Ppyior(3), and a likelihood function Pp,(X|3) expressing
the likelihood of an observation given a value of the parameters. The goal is to
combine these two to form a posterior; as per page 258, Bayes’s Rule tells us that
this is

- PL(XB) Pyrior (B)
Poost (B1X) = IVBEJB PL(X|B)pPprior(ﬁ)dB

The numerator is easy to calculate, but the denominator is a global value, meaning
that we can not know it with certainty without evaluating the numerator at an
infinite number of points. The Metropolis—Hastings algorithm, a type of MCMC,
offers a solution.

The gist is that we start at an arbitrary point, and draw a new candidate point from
the prior distribution. If the candidate point is more likely than the current point
(according to FL,), jump to it, and if the candidate point is less likely, perhaps jump
to it anyway. After a burn-in period, record the values. The histogram of recorded
values will be the histogram of the posterior distribution. To be more precise, here
is a pseudocode description of the algorithm:
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Begin by setting 3y to an arbitrary starting value.
For ¢ = 1 to a few million:
Draw a new proposed point, 3, from Pprior.
If PL(X|Bp) > PL(X][Bi-1)
ﬁz’ — ﬁp
else
Draw a value u ~ [0, 1]
If u < PL(X[B,)/PL(X]Bi-1)
ﬁi — ﬁp
else
Bi < Bi—1
If 4 > 1,000 or so, record ;.
Report the histogram of ;s as the posterior distribution of j3.

As should be evident from the description of the algorithm, it is primarily used
to go from a prior to a posterior distribution. To jump to a new point Bpey, it
must first be chosen by the prior (which happens with probability Ppyior(Bnew))
and then will be selected with a likelihood roughly proportional to Pp,(X|/5new ).
so the recorded draw will be proportional to Pyrior (Onew ) Pr(X|Bnew ). This rough
intuitive argument can be made rigorous to prove that the points recorded are a
valid representation of the posterior; see Gelman et al. (1995).

Why not just draw from the prior and multiply by the likelihood directly, rather
than going through this business of conditionally jumping? It is a matter of effi-
ciency. The more likely elements of the posterior are more likely to contribute a
large amount to the integral in the denominator of the updating equation above,
so we can estimate that integral more efficiently by biasing draws toward the most
likely posterior values, and the jumping scheme achieves this with fewer draws
than the naive draw-from-the-prior scheme does.

You have already seen one concrete example of MCMC: the simulated annealing
algorithm from Chapter 10. It also jumps from point to point using a decision
rule like the one above. The proposal distribution is basically an improper uniform
distribution—any point is as likely as any other—and the likelihood function is the
probability distribution whose optimum the simulated annealing is seeking. The
difference is that the simulated annealing algorithm makes smaller and smaller
jumps; combined with the fact that MCMC is designed to tend toward more likely
points, it will eventually settle on a maximum value, at which point we throw away
all the prior values. For the Bayesian updating algorithm here, jumps are from a
fixed prior, and tend toward the most likely values of the posterior, but the 1, 000th
jump is as likely to be a long one as the first, and we use every point found to
produce the output distribution.

At the computer, the function to execute this algorithm is apop_update. This func-
tion takes in a parametrized prior model, an unparametrized likelihood and data,
and outputs a parametrized posterior model.
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The output model will be one of two types. As with the Beta/Binomial example on
page 259, there are many well-known conjugate distributions, where the posterior
will be of the same form as the prior distribution, but with updated parameters.
For example, if the prior is named Gamma distribution (which the apop_gamma
model is named) and the likelihood is named Exponential distribution (and apop_-
exponential is so named), then the output of apop_update will be a closed-
form Gamma distribution with appropriately updated parameters. But if the tables
of closed form conjugates offer nothing applicable, the system will fall back on
MCMC and output an apop_histogram model with the results of the jumps.

Q11.4

Qs

Check how close the MCMC algorithm comes to the closed-form model.

* Pick an arbitrary parameter for the Exponential distribution, 3;. Gen-
erate ten or twenty thousand random data points.

* Pick a few arbitrary values for the Gamma distribution parameters,

B prior*

* Estimate the posterior, by sending the two distributions, the
randomly-generated data, and 3., to apop_update.

* Make a copy of the apop_exponential model and change its name
to something else (so that apop_update won’t find it in the conjugate
distribution table). Re-send everything to apop_update.

* Use a goodness-of-fit test to find how well the two output distributions
match.

The output to the updating process is just another distribution, so it can be
used as the prior for a new updating step. In theory, distributions repeatedly
updated with new data will approach putting all probability mass on the true
parameter value. Continuing from the last exercise:

* Regenerate a new set of random data points from the Exponential
distribution using the same (7.

» Send the new data, the closed-form posterior from the prior exercise,
and the same Exponential model to the updating routine.

* Plot the output.

* Once you have the generate/update/plot routine working, call it from
a for loop to generate an animation beginning with the prior and
continuing with about a dozen updates.

* Repeat with the MCMC-estimated posteriors.
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11.5 NON-PARAMETRIC TESTING Section 11.3 presented a procedure for

testing a claim about a data set that con-

sisted of drawing a bootstrap data set, regenerating a statistic, and then using the

many draws of the statistic and the CLT to say something about the data. But we

can test some hypotheses by simply making draws from the data and checking
their characteristics, without bothering to produce a statistic and use the CLT.

To give a concrete example of testing without parametric assumptions, consider
the permutation test. Say that you draw ten red cards and twenty black cards from
what may be a crooked deck. The hypothesis is that the mean value of the red
cards you drew equals the mean of the black cards (counting face cards however
you like). You could put the red cards in one pile to your left, the black cards in a
pile to your right, calculate X;ed, Ored> Xblack, aNd Gplack, aSSUME Xpack — Xred ~ T
distribution, and run a traditional ¢ test to compare the two means.

But if p.eq really equals fipiack, then the fact that some of the cards you drew are
black and some are red is irrelevant to the value of Xjef; — Xyignt- That is, if you
shuffled together the stacks of black and red cards, and dealt out another ten cards
to your left and twenty to your right, then Xjeft — Xyight should not be appreciably
different. If you deal out a few thousand such shuffled pairs of piles, then you can
draw the distribution of values for Xiefy — Xyight- If Xred — Xblack 100ks as if it is
very far from the center of that distribution, then we can reject the claim that the
color of the cards is irrelevant.

What is the benefit of all this shuffling and redealing when we could have just run
a t test to compare the two groups? On the theoretical level, this method relies on
the assumption of the bootstrap principle rather than the assumptions underlying
the CLT. Instead of assuming a theoretical distribution, you can shuffle and redraw
to produce the distribution of outcome values that matches the true sample data
(under the assumption that pi,.q = pp1ack), and then rely on the bootstrap principle
to say that what you learned from the sample is representative of the population
from which the sample was drawn.

On a practical level, the closer match to the data provides real benefits. Lehmann
& Stein (1949) showed that the permutation test is more powerful—it is less likely

to fail to reject the equality hypothesis when the two means are actually different.

In pseudocode, here is the test procedure:®

The test is attributed to Chung & Fraser (1958). From p 733: “The computation took one day for programming
and two minutes of machine time.”



gsl_stats March 24, 2009

376 CHAPTER 11

o ’ircd - iblack’

d < the joined test and control vectors.

Allocate a million-element vector v.

For ¢+ = 1 to a million:
Draw (without replacement) from d a vector the same size as X;eq, L.
Put the other elements of d into a second vector, R.
V; |f - ﬁ|

a «— the percentage of v; less than p.

Reject the claim that 4 = 0 with confidence a.

Fail to reject the claim that n = 0 with confidence 1 — a.

Baum et al. (2008) sampled genetic material from a large number of cases
with bipolar disorder and controls who were confirmed to not have bipo-
lar disorder. To save taxpayer money, they pooled the samples to form the
groups listed in the file data-genes in the code supplement. Each line of
that file lists the percent of the pool where the given SNP (single nucleotide
Q polymorphism) has a given marker.

11.6 | For which of the SNPs can we reject the hypothesis of no difference between
the cases and controls? Write a program to read the data into a database,
then use the above algorithm to test whether we reject the hypothesis of no
difference in marker frequency for a given SNP, and finally write a main
that runs the test for each SNPs in the database. The data here is cut from
550,000 SNPs, so base the Bonferroni correction on that many tests.

Other nonparametric tests tend to follow a similar theme: given a null hypothesis
that some bins are all equiprobable, we can develop the odds that the observed
data occurred. See Conover (1980) for a book-length list of such tests, including
Kolmogorov’s method from page 323 of this book.

TESTING FOR BIMODALITY As the finale to the book, Listing 11.12 shows the use
of kernel densities to test for multimodality. This in-
volves generating a series of kernel density estimates of the data, first with the
original data, and then with a few thousand bootstrap estimates, and then doing a
nonparametric test of the hypothesis that the distribution has fewer than n modes,

for each value of n.

Recall the kernel density estimate from page 262, which was based on the form

it x, ) = T M2/,

where x is the vector of n data points observed, A/ (y) is a Normal(0,1) PDF
evaluated at 77, and h € R™ is the bandwidth. Let k be the number of modes.
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Figure 7.15 (p 262) showed that as h rises, the spike around each point spreads
out and merges with other spikes, so k falls, until eventually the entire data set is
subsumed under one single-peaked curve, so £ = 1. Thus, there is a monotonic
relationship between h and the number of modes in the density function induced
by h.

Silverman (1981) offers a bootstrap method of testing a null hypothesis of the form
the distribution has more than k modes. Let hg be the smallest value of h such that

f(t, X, hp) has more than k£ modes; then the null hypothesis is that hg is consistent
with the data.

We then draw a few hundred bootstrap samples from the data, x’l, e X/QOO; write
down f(t,x}, ko). ..., f(t,Xbyo, ho); and count the modes of each of these func-
tions. Silverman shows that, thanks to the monotonic relationship between h and
the number of modes, the percentage of bootstrap distributions with more than &
modes matches the likelihood that f(¢,x, hg) is consistent with the data. If we re-
ject this hypothesis, then we would need a lower value of h, and therefore more
modes, to explain the data.

Listing 11.12 shows the code used to produce these figures and test a data set of
television program ratings for bimodality. Since it draws a few hundred bootstrap
samples, link it with oneboot . ¢ from page 368.

The countmodes function makes two scans across the range of the data. The first
generates a histogram: at each point on the x-axis, it piles up the value at that point
of a Normal distribution centered at every data point. The result will be a histogram
like those pictured in Figure 7.15, page 262, or those that are produced in the
Gnuplot animation the program will write to the kernelplot file. The second
pass checks for modes, by simply asking each point whether it is higher than the
points to its left and right.

h — k: For each index i, ktab[i] is intended to be the smallest value of h that
produces fewer than i modes. The £i11_kmap function calls countmodes to find
the number of modes produced by a range of values of h. The function runs from
the largest h to the smallest, so the last value of h written to any slot will be the
smallest value that produces that mode count.’

k — p: Now that we have the smallest bandwidth h that produces a given k using
the actual data, boot does the bootstrapping: one_boot (p 368) uses a straight-
forward for loop to produce a sample, then the same countmodes function used
above is applied to the artificial sample. If the mode count is larger than the num-
ber of modes in the original, it is a success for the hypothesis. The function then

7 Also, the for loop in this function demonstrates a pleasant trick for scanning a wide range: instead of stepping
by a fixed increment, it steps by percentages, so it quickly scans the hundreds but looks at the lower end of the
range in more detail.
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returns the percent successes, which we can report as a p value for the hypothesis
that the distribution has more than k& modes.

In some parts of the output, such as for £k = 12, the battery of tests finds low
confidence that there are more than £ modes and high confidence that there are
more than k + 1 modes. If both tests were run with the same value of h, this would
be inconsistent, but we are using the smallest level of smoothing possible in each
case, so the tests for k and k 4 1 parameters have little to do with each other. For
small k, the output is monotonic, and shows that we can be very confident that the
data set has more than three modes, and reasonably confident that it has more than
four.

#include "oneboot.h"

double modect_scale, modect_min, modect_max,
h_min=25, h_max=500, max_k = 20,
boot_iterations = 1000,
pauselength = 0.1;

char outfile[] = "kernelplot";

void plot(apop_data xd, FILE =f){
fprintf(f, "plot *—’ with lines\n");
apop_data_print(d, NULL);
fprintf(f, "e\npause %g\n", pauselength);
}

int countmodes(gsl_vector *xdata, double h, FILE xplothere){
int len =(modect_max —modect_min)/modect_scale;
apop_data :ddd = apop_data_calloc(0, len, 2);
double sum, i=modect_min;
for (size_t j=0; j < ddd—>matrix—>sizel; j ++){
sum = 0;
for (size_t k = 0; k< data—>size; k++)
sum += gsl_ran_gaussian_pdf((i—gsl_vector_get(data,k))/h,1)/(data—>size=h);
apop_data_set(ddd, j, 0, i);
apop_data_set(ddd, j, 1, sum);
i+=modect_scale;
}
int modect =0;
for (i=1;i<len—1;i++)
if(apop_data_get(ddd,i,1)>=apop_data_get(ddd,i—1,1)
&& apop_data_get(ddd,i,1)>apop_data_get(ddd,i+1,1))
modect++;
if (plothere) plot(ddd, plothere);
apop_data_free(ddd);
return modect;

}

void fill_kmap(gsl_vector =data, FILE =f, double xktab){
for (double h = h_max; h> h_min; hx=0.99){
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int val = countmodes(data, h, f);
if (val <max_k)
ktab[val — 1] = h;

}

double boot(gsl_vector :data, double h0, int modect_target, gsl_rng =r){
double over_ct =0;
gsl_vector xboots = gsl_vector_alloc(data—>size);
for (int i=0; i < boot_iterations; i++){
one_boot(data, r, boots);
if (countmodes(boots, h0, NULL) > modect_target)
over_ct++;
}
gsl_vector_free(boots);
return over_ct/boot_iterations;

}

apop_data «produce_p_table(gsl_vector :data, double =ktab, gsl_rng =r){
apop_data =ptab = apop_data_alloc(0, max_k, 2);
apop_name_add(ptab—>names, "Mode", ’c’);
apop_name_add(ptab—>names, "Likelihood of more", ’c’);
for (int i=0; i< max_k; i++){
apop_data_set(ptab, i, 0, 1);
apop_data_set(ptab, i, 1, boot(data, ktab[i], i, r));
}

return ptab;

}

void setvars(gsl_vector xdata){ //rescale based on the data.
double m1 = gsl_vector_max(data);
double m2 = gsl_vector_min(data);
modect_scale = (m1—m2)/200;
modect_min = m2—(m1—m2)/100;
modect_max = m1+(m1—m?2)/100;

}

int main(){
APOP_COL(apop_text_to_data("data—tv", 0,0), 0, data);
setvars(data);
FILE =f = fopen(outfile, "w");
apop_opts.output_type =’p’;
apop_opts.output_pipe = f;
double :xktab = calloc(max_k, sizeof(double));
fill_kmap(data, f, ktab);
fclose(f);
gsl_rng =r = apop_rng_alloc(3);
apop_data_show(produce_p_table(data, ktab, r));

Listing 11.12 Silverman’s kernel density test for bimodality. Online source

379

:bimodality.c
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Another way to speed the process in bimodality.c is to clump the data before
summing the Normal distributions. If there are three points at —.1, 0, and .1, then
this will require three calculations of the Normal PDF for every point along the real
line. If they are clumped to O, then we can calculate the Normal PDF for y = 0
times three, which will run three times as fast.

Write a function to group nearby data points into a single point with a
given weight (you can use the weight element of the apop_data struc-
le ture to record it). Rewrite the countmodes function to use the clumped and
weighted data set. How much clumping do you need to do before the results
degrade significantly?

» Via resampling, you can test certain hypotheses without assuming
parametric forms like the ¢ distribution.

» The typical kernel density estimate consists of specifying a distribu-
tion for every point in the data set, and then combining them to form
a global distribution. The resulting distribution is in many ways much
z more faithful to the data.

» As the bandwidth of the sub-distributions grows, the overall distribu-
tion becomes smoother.

» One can test hypotheses about multimodality using kernel densities,
by finding the smallest level of smoothing necessary to achieve n-
modality, and bootstrapping to see the odds that that level of smooth-
ing would produce n-modality.
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Since C is a standard, not a product from a single corporation or foundation, differ-
ent C development environments have minor, potentially maddening differences.

The problem of whether a decent compiler and useful libraries are available on
a given system has basically been surmounted: if something is missing, just ask
the package manager to install it from the Internet. But then the next question is:
where did the package manager put everything? Some systems like to put libraries
in /usr/local, some like to put them in /opt/, and neither of these locations
even makes sense for the ever-eccentric Windows operating system.

The solution is to set environment variables that will specify how your compiler
will find the various elements it needs to produce your program. These variables
are maintained by the operating system, as specified by the POSIX standard.'

A.1 ENVIRONMENT VARIABLES If you type env at the command prompt,
you will get a list of the environment vari-
ables set on your system. Here is a sampling from my own prompt:

SHELL=/bin/bash
USER=klemens

Later members of the Windows family of operating systems claim POSIX compliance, meaning that most
of this works from the Windows command prompt, although this may require downloading Microsoft’s Interix
package. However, the Cygwin system has its own prompt which basically keeps its own set of environment
variables, and I will assume you are using Cygwin’s shell rather than that of Windows.
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LD_LIBRARY_PATH=/usr/local/lib:
PATH=/home/klemens/tech/bin:/usr/local/bin:/usr/bin:/bin:/usr/games:/sbin
HOME=/home/klemens

Every time a program spawns a new subprogram, the environment variables are
duplicated and passed to the child program. Notably, when you start a program
from the shell prompt, all of the environment variables you saw when you typed
env are passed on to the program.

The env command works well with grep (see page 404). For example, to find out
which shell you are using, try env | grep SHELL.

Setting  Now that you know which shell you are using, the syntax for setting envi-
ronment variables differs slightly from shell to shell.

You are probably using bash or another variant of the Bourne shell.” In these
systems, set environment variables using the shell’s export command:

[export USER=Stephen

Some shells are picky about spacing, and will complain if there is a space before or
after the equals sign. Others do not even accept this syntax, and require a two-line
version:

USER=Stephen
export USER

This form clarifies that the process of setting an environment veriable in bash con-
sists of first setting a local variable (which is not passed on to child programs) and
then moving it from the set of local variables to the set of environment variables.
If you do not do much shell programming, there is no loss in setting all variables
in the environment.

The other family of shells is the C shell, which bears a vague, passing resemblance
to the C programming language. In csh, use setenv:

[setenv USER Stephen

2pash=Bourne-again shell, since it is an overhaul of the shell Stephen Bourne wrote for UNIX in 1977.
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Getting  In all shells, and many shell-like programs, you can get the value of a vari-
able by putting a dollar sign before the variable name. For example,

[echo $USER

will print the current value of the USER variable to the screen. To give a more useful
example,

[export PATH=$PATH:$HOME/bin

will extend the PATH, replacing that variable with a copy of itself plus another
directory at the end. For my own already lengthy path, listed above, this command
would result in the following new path:

[PATH=/home/klemens/tech/bin:/usr/local/bin:/u sr/bin:/bin:/usr/games:/sbin:/home/klemens/bin

Setting for good  Every time your shell starts, it reads a number of configuration

files; see your shell’s manual page (man bash, man csh,...) for

details. But most all of them read a file in your home directory whose name begins
with a dot and ends in rc, such as .bashrc or .cshrec.

It is a POSIX custom that if a file begins with a dot, then it is hidden, meaning that
the usual directory listing such as 1s will not show these files. However, if you
explicitly ask for hidden files, via 1s -a, 1s -d .*, or your GUI file browser’s
show hidden option, you will certainly find a number of .rc files in your home
directory.’

The shell’s .rc files are plain text, and generally look like the sort of thing you
would type on a command line—because that is what they are. If you put an
export or setenv command in this file, then those commands will be read ev-
ery time your shell starts, and the variables will thus be set appropriately for all of
your work.

» The file does not auto-execute after you edit. To see the effects of your edit, ei-
ther exit and re-enter the shell, or use source .bashrc or source .cshrc to
explicitly ask the shell to read the file.

3By the way, when making backups of your home directory, it is worth verifying that hidden files are also
backed up.
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% GETTING AND SETTING FROM C It is easy to read and write environment vari-

[c BN o) SRV I R

ables in a POSIX system because it is easy to
read and write them in C. Listing A.1 shows that the getenv function will return
a string holding the value of the given environment variable, and setenv will set
the given environment variable (on line 6, USER) to the given value (“Stephen”).
The third argument to setenv specifies whether an existing environment variable
should be overwritten. There are a few other useful environment-handling func-
tions; see your standard C library reference for details.

#include <stdlib.h> /environment handling
#include <stdio.h>

int main(){
printf("You are: %s\n", getenv("USER"));
setenv("USER", "Stephen", 1);
printf("But now you are: %s\n", getenv("USER"));

Listing A.1 Getting and setting environment variables. Online source: env . c.

Why is it safe to run the program in Listing A.1, which will overwrite an important
environment variable? Because a child process (your program) can only change its
own copy of the environment variables. It can not overwrite the variables in the
environment of a parent process (the shell). Overriding this basic security precau-
tion requires a great deal of cooperation from the parent process. But this does not
make setenv useless: if your program starts other programs via a function like
system or popen, then they will inherit the current set of environment variables.
When the shell opened your program, it passed in its environment in exactly this
manner.

» The operating system maintains a set of variables describing the cur-
rent overall environment, such as the user’s name or the current work-
ing directory.

» These environment variables are passed to all child programs.

» They can be set or read on the command line or from within a pro-
gram.
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A.2 PATHS On to the problem of getting your C compiler to find your libraries.

When you type a command, such as gcc, the shell locates that program on your
hard drive and loads it into memory. But given that an executable could be any-
where (maybe /bin, /opt, or c¢:\Program Files), how does the shell know
where to look? It uses an environment variable named PATH that lists a set of direc-
tories separated by colons (except on non-Cygwin Windows systems, where they
are separated by semicolons). You saw a number of examples of such a variable
above, and can run env | grep PATH to check your own path.

When you type a command, the shell checks the first directory on the path for the
program you requested. If it finds an executable with the right name, then the shell
runs that program; else it moves on to the next element of the path and tries again.
If it makes its way through the entire path without finding the program, then it
gives up and sends back the familiar command not found error message.

The current directory, ./, is typically not in the path, so programs you can see
with 1s will not be found by searching the path.* The solution is to either give an
explicit path, like . /run_me, or extend the current directory to your path:

[export PATH=$PATH:./

Recall that by adding this line to your .bashrc or .cshrc, the path will be ex-
tended every time you log in.

There are two paths that are relevant to compilation of a C program: the include
path and the library path.’ The procedure is the same as with the shell’s executable
path: when you #include a file (e.g., lines 1 and 2 of Listing A.1), the prepro-
cessor steps through each directory listed in the include path checking for the re-
quested header file. It uses the first file that matches the given name, or gives up
with a header not found error. When the linker needs to get a function or structure
from a library, it searches the library path in the same manner.

But unlike the executable path, there are several ways for a directory to appear on
the include or library path.

4Many consider putting the current directory in the path to be a security risk (e.g., Frisch (1995, p 226)); in
security lingo, it allows a current directory attack. If the current directory is at the head of the path, a malicious
user could put a script named 1s in a common directory, where the script contains the command rm -rf $HOME.
When you switch to that location and try to get a directory listing, the shell instead finds the malicious script,
and your home directory is erased. Putting the current directory at the end of the path provides slightly more
protection, but the malicious script could instead be named after a common typo, such as ¢ or mr. But given that
many of today’s POSIX computers are used by one person or a few close associates, adding ./ to the path is not
a real risk in most situations.

5Java users will notice a close resemblance between these paths and the CLASSPATH environment variable,
which is effectively an include and a library path in one.
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* There is a default include path and a default library path, built in to the compiler
and linker. This typically includes /usr/include and /usr/local/include in
the include path, and /usr/1ib and /usr/local/1lib in the libpath.

* The environment variables INCLUDEPATH and LIBPATH are part of the path. These
names are sometimes different, depending on the linker used: gcc uses 1d, so it
looks for LD_LIBRARY_PATH—except on Mac systems, where it looks for DYLD_-
LIBRARY_PATH. On HP-UX systems, try SHLIB_PATH. Or more generally, try man
1d orman cc to find the right environment variable for your system.

* You can add to the paths on the compiler’s command line. The flag
-I/usr/local/include
would add that directory to the include path, and the flag
-L/usr/local/1lib
would add that directory to the library path.

Also, some libraries are shared, which in this context means that they are linked
not during compilation, but when actually called in execution. Thus, when you
execute your newly-complied program, you could still get a missing library error;
to fix this you would need to add the directory to your libpath environment variable.

Searching  So, now that you know the syntax of adding a directory to your PATHs,
which directory should you add? Say that you know you need to add
the header for the TLA library, which will be a file with a name like tla.h. The
command find dir -name tla.h will search dirand every subdirectory of dir
for a file with the given name. Searching the entire hierarchy beginning at the root
directory, via find / -name tla.h, typically takes a human-noticeable amount
of time, so try some of the typical candidates for d<r first: /usr, /opt, /local, or

for Mac OS X, /sw.

Compiled libraries have different names on different systems, so your best bet is to
search for all files beginning with a given string, e.g., find dir -name ’tla.*’.

Assembling the compiler command line  There is nothing in your source code

that tells the system which libraries are

to be linked in, so the libraries must be listed on the command line. First, you will

list the non-standard directories to search, using the capital -L flag, then you will
need another lower-case -1 flag for each library to be called in.

Order matters when specifying libraries. Begin with the most-dependent library or
object file, and continue to the least dependent. The Apophenia library depends on
SQLite3 and the GSL library—which depends on a BLAS library like the GSL’s
companion CBLAS. If your program already has an object file named source.o
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and you want the output program to be named run_me, then you will need to
specify something like

gcc source.o —lapophenia —lgsl —Icblas —Isqlite3
or
gce source.o —lapophenia —lIsqlite3 —Igsl —Icblas

The Sqlite3 library and GSL/CBLAS are mutually independent, so either may
come first. The rest of the ordering must be as above for the compilation to work.%
You may also need to specify the location of some of these libraries; the path ex-
tension will have to come first, so the command now looks like

[gcc —L/ust/local/lib source.o —lapophenia —Igsl —Icblas —lIsqlite3

This is an immense amount of typing, but fortunately, the next section offers a
program designed to save you from such labor.

» Many systems, including the shell, the preprocessor, and the linker,
search a specified directory path for requested items.

z » The default path for the preprocessor and linker can be extended via
both environment variables and instructions on the compiler’s com-
mand line.

A.3 MAKE The make program provides a convenient system for you to specify

flags for warnings and debugging symbols, include paths, libraries

to link to, and who knows what other details. You write a makefile that describes

what source files are needed for compilation and the flags the compiler needs on

your system, and then make assembles the elaborate command line required to

invoke the compiler. Many programs, such as gdb, vi, and EMACS, will even let

you run make without leaving the program. Because assembling the command line

by hand is so time consuming and error-prone, you are strongly encouraged to
have a makefile for each program.

Fortunately, once you have worked out the flags and paths to compile one program,
the makefile will probably work for every program on your system. So the effort

of writing a makefile pays off as you reuse copies for every new program.

The discussion below is based on Listing A.2, a makefile for a program named

SWith some linkers, order does not matter. If this is the case on your system, consider yourself lucky, but try
to preserve the ordering anyway to ease any potential transition to another system.
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run_me, which has two .c files and one header file. It is not very far removed
from the sample makefile in the online code supplement.

OBIJECTS =filel.o file2.0

PROGNAME = run_me

CFLAGS = —g —Wall —Werror —std=gnu99
LINKFLAGS = —L/usr/local/lib —Igsl —lgslcblas —Isqlite
COMPILE = gcc $(CFLAGS) —c $< —o0 $@

executable: $(OBJECTS)
gcc $(CFLAGS) $(OBJECTS) $(LINKFLAGS) —0$(PROGNAME)

[c BN o) SRV I T

—_
[e>RNe}

filel.o: filel.c my_headers.h
$(COMPILE)

—_ ==
W N =

file2.0: file2.c my_headers.h
$(COMPILE)

— = =
AN N B

run: executable
/$(PROGNAME) $(PARGS)

—_
-

Listing A.2 A sample makefile for a program with two source files.

The make program does two types of operation: expanding variable names and
following dependencies.

Variable expansion  Variable names in a makefile look much like environment vari-

ables, and behave much like them as well. They are slightly

easier to set—as on lines 1-5, just use VAR = walue. When referencing them,

use a dollar sign and parens, so line five will replace $ (CFLAGS) with -g -Wall

-Werror -std=gnu99. All of the environment variables are also available this
way, so your makefile can include definitions like:

[INCLUDEPATH = $(INCLUDEPATH):$(HOME)/include

As with environment variables, variables in makefiles are customarily in all caps,
and as with constants in any program, it is good form to group them at the top of
the file for ease of reference and adjustment.

The $@ and $< variables on line five are special variables that indicate the target
and the file used to build it, respectively, which brings us to the discussion of
dependency handling.
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Dependencies  The remainder of the file is a series of target/dependency pairs and

actions. A target is something to be produced. Here the targets are

object files and an executable, and on page 188, there is a makefile whose targets

are PDFs and graphics. The dependency is the source containing the data used

to produce the target. An object file depends on the C source code defining the

functions and structures, an executable depends on the object files being linked

together, and a PDF document depends on the underlying text. In most of these

cases, the dependency is data that you yourself wrote, while the target is always
computer generated.

The lines with colons, such as line ten, are target/dependency descriptions: the
single item before the colon is the target name, and the one or several items after
the colon are the files or other targets upon which the target depends.

After each target line, there are instructions for building the target from the de-
pendencies. For a simple C program, the instructions are one line (typically a call
to gcc). The makefile on page 188 shows some more involved target build scripts
that span several lines.

An important annoyance: the lines describing the building process are indented by
tabs, not spaces. If your text editor replaces tabs with a set of spaces, make will
fail.”

Having described the format of the makefile, let us go over the process that the
system will go through when you type make on the command line. The first target
in a makefile is the default target, and is where make begins if you do not specify a
target on the command line. So make looks at the target specification on line seven
and, using its powers of variable expansion, sees that run_me dependson filel.o
and file2.o. Let us assume that this is the first time the program is being built,
so neither object file exists. Then make will search for a rule to build them, and
thus digresses to the later targets. There, it executes the command specified by
$(COMPILE) on lines 11 and 14. Having created the subsidiary targets, it then
returns to the original target, and runs the command to link together the two object
files.

Let us say that you then modify £ilel.c (but none of the other files) and then
call make again. The program again starts at the top of the tree of targets, and sees
that it needs to check on filel.o and file2.o. Checking the dependencies for
filel.o, it sees that the file is not up-to-date, because its dependency has a newer
time stamp.® So filel.o is recompiled, and run_me then recreated. The system
knows that file2.o does not need to be recompiled, and so it does not bother to
do so. In a larger project, where recompilation of the whole project can take several
seconds or even minutes, make will thus save you time as well as typing.

"The odds are good that <ctr1-V> will let you insert an odd character into your text. E.g., <ctrl-V><tab>
will insert a tab without converting it to spaces.

8What should you do if the time stamp on a file is broken, because it was copied from a computer in a different
time zone or was otherwise mis-stamped? The touch command (e.g., touch *.c) will update the time stamp on
a file to the current time. If you want make to recompile filel .o, you can do so with touch filel.c; make.
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Compile && run  Almost without fail, the next step after a successful compile is to
run the program. The makefile above gives you the option of do-

ing this via the run dependency on lines 16—17, which depends on the executable
dependency on line 7. You can specify targets on the command line; if you simply
type make, then the system assumes the first target in the file (line 7), and if you
type the command make run, then it will use the instructions under the run target.

make halts on the first error, so if the program fails to compile, the system stops
and lets you make changes; if it compiles correctly, then make goes on to run the
program. It considers a compilation with warnings but no errors to be successful,
but you should heed all warnings. The solution is to add -Werror to the CFLAFS
command line, to tell the compiler to treat warnings as errors.

There is no easy way to pass switches and other command-line information from
make’s command line to that of your program. The makefile here uses the hack of
defining an environment variable PARGS. On the command line, you can export
PARGS=’> -b |gnuplot -persist’, andmake will run your program with the -b
flag and pipe the output through gnuplot.

If you find the PARGS hack to be too hackish, you can just run the program from
the command line as usual. Recall that in C syntax, the b in (a && b) is eval-
vated only if a is true. Similarly on the command line: the command make &&
./run_me will first run make, then either halt if there are errors or continue on to
./run_me if make was successful. Again, you have one command line that does
both compilation and execution; coupled with most shells’ ability to repeat the last
command line (try the up-arrow or !!), you have a very fast means of recompiling
and executing.
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Take one of the sample programs you wrote in Chapter 2 and create a direc-
tory for it.

Create a new directory, and copy over the . c file.
Copy over the sample makefile from the online sample code.

Modify the PROGNAME and OBJECTS line to correspond to your
project.

If you get errors that the system can not find certain headers, then
you will need to modify the INCLUDEPATH line. If you get errors
from the linker about symbols not found, you will need to change
the LINKFLAGS line.

Type make and verify that the commands it prints are what they
should be, and that you get the object and executable files you ex-
pected.

Now that you have a makefile that works for your machine, you can copy
it for use for all your programs with only minimal changes (probably just
changing the PROGNAME or OBJECTS).

>

>

>

The makefile summarizes the method of compiling a program on your
system.

At the head of the makefile, place variables to describe the flags
needed by your compiler and linker.

The makefile also specifies what files depend on what others, so that
only the files that need updating are updated.
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If you are lucky, then your data set is in exactly the format it needs to be in to be
read by your stats package, Apophenia, Graphviz, et cetera.

By definition, you will rarely get Iucky, so this appendix will explain how to mod-
ify a text file to conform to an input standard.

The book so far has included a great deal on writing new text files via the printf
family, but not much on the process of modifying existing files. That is because
modifying files in place is, simply put, frustrating. Something as simple as replac-
ing 10 with 100 requires rewriting the entire file from that point on.

Thus, this appendix will look at some means of modifying text via existing pro-
grams that go through the tedium of modifying files for you. Its goal, narrowly
defined by the rest of the text, is to show you how to convert a data file either into
the input format required by a stats package or into a command file in the language
of Gnuplot, a Graphviz-family tool, or SQL.

As with the rest of the analysis, you should be able to execute these procedures
in a fully automated manner. This is because you will no doubt receive a revised
data set next week with either corrections or more data, and because writing down
a script produces an audit trail that you or your colleagues can use to check your
work.

The primary technique covered in this appendix is the parsing of regular expres-
sions, wherein you specify a certain regularity, such as numbers followed by letters,
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and a program searches for that regular expression in text and modifies it as per
your instructions.

A secondary theme is the POSIX water metaphor. Data flows in a stream from one
location to another, burbling out of data files and piping through filters like sed
(the stream editor). Eventually, the stream of data reaches its final destination: a
graphic, a database, or another file holding clean, filtered data.

Along the way, you will see how to effectively search your files. As your projects
get large, you will desire tools that find every use of, say, buggy_variable in your
program or every reference to an author in your documents. Regular expression
tools will help you with this.

After the discussion of how one assembles a pipeline from small parts, this ap-
pendix will cover simple searching, as an introduction to regular expressions. The
final section applies these tools to produce several scripts to reformat text files into
a format appropriate for your data-handling systems.

B.1 SHELL SCRIPTS As with Gnuplot or SQLite’s command-line utility, you

can operate the shell (what many just call the command

line) by typing in commands or by writing a script and having the shell read the

script. Thus, you can try the commands below on the command line, and when
they work as desired, cut and paste them into a script as a permanent record.

Your script can do more than just reformat text files: it can begin with some perl
or sed commands to reformat the data file, then call your C program to process the
file, and finally call Gnuplot to display a graph.

The quickest way to make a script executable is to use the source command.
Given a list of commands in the text file myscript, you can execute them using
source myscript.!

Write a short script to compile and execute hello_world.c. On the first

Q line of the script, give the compilation command (as per the exercise on

B1 page 18), and on the second line, execute ./a.out. Then run your script
from the command line.

1If you are going to run the script more than a few times, you may want to make it directly executable. This
is not the place for a full POSIX tutorial, but chmod 755 myscript or chmod +x myscript will do the trick.
Having made the script executable, you can call a script in the current directory (aka ./) from the shell using
./myscript. [Why do you need the ./? See the discussion of paths in Appendix A.]
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Shell symbol Meaning C equivalent
> send output to a file fopen("filename", "w");
fprintf...;
>> append output to a file  fopen(" filename", "a");
fprintf ...;
< read output from a file  fopen(" filename", "r");
fgets...;
[ redirect output to an- popen("progname", "w");
other program fprintf...;
popen("progname", "r");
fgets...;
<< take input from an in- exercise for the reader (use
line script fgets)

Table B.1 Redirection via the command prompt and C

REDIRECTION Each program has a standard input stream and a standard output

stream, named stdin and stdout, plus a third stream typically used

for error messages, stderr. This section will cover the various means of bending

and redirecting these streams, and the next section will cover a few tools you join
together to filter streams of text.

By default stdin and stdout are the keyboard and screen, respectively. For ex-
ample, sed reads from stdin and writes to stdout, so the command

[sed —np

simply prints to the screen whatever is typed in. If you try it, you will see that this
means simply that sed repeats whatever you type.

shell prompt> sed —n p
Hello.

Hello.

How are you?

How are you?

Stop imitating me.

Stop imitating me.
<ctrl-D>

Now for the shifting of the streams, via the shell symbols listed in Table B.1. A
clause of the form > filename tells the system to write whatever it would have
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put on the screen to a file. Thus, if you put the command sed -n p > outfile
on the command line, then nothing will print to the screen, but whatever you type
(until you hit <ctrl-D> to exit) will be written to outfzle.

As a variant, >> outfile will append to a file, rather than overwriting it as >
outfile would.

A < tells the system that it should take input not from the keyboard but from a
file. Thus, sed -n p < 4nput_file will dump the contents of input_file to

the screen.

Q Bo ‘ Use sed -n p and redirection of both input and output to copy a file.

Your final redirection option is the
pipe. The pipe connects stdout for
one program to stdin for another. POSIX-compliant shells use both ‘single-ticks’ and
“double-ticks” to delimit strings, but they behave dif-

Question: what exponents of four ferently. The single-tick form does not expand $VAR
end in a six? On page 209 (and to the value of the V4R environment variable, and does

in th d 1 1 not treat \ or ! as special. Conversely, the “double-
in the code supplement), you wi tick” form makes all of these changes before the

find a program, getopt, that prints | called program sees the string. Single-ticks tend to
exponents to stdout. Below, you | be easier to use for regular expressions, because of

will see that grep will search its the preponderance of special characters. Notably, it
input for a certain pattern; for ex- is basically impossible to put a ! inside double-ticks;
ample, grep ’6$’ <myf7}’le will | You will need a form like "start string--pause

i . L string"\!"--and continue."
search myfile for lines ending in a

Shell expansion

six. Thus, we could redirect the output for getopt to a file, then input that file to
grep.
Jgetopt 4 > powers_of_four

grep "6%° < powers_of_four

The pipe, |, streamlines this by directly linking stdout from the first program and
stdin to the second, bypassing the need for a file in between the two commands.

[/getopt 4| grep 6%’
This line prints the filtered output of getopt to the screen, at which point the
pattern in the exponents is eminently clear.

Now that you have seen >, >>, and <, you may be wondering about <<. Appending
to input does not quite make sense; instead, this form allows you to put small
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scripts that would normally be in a separate file directly on the command line.
Here is a sample usage:

gnuplot << end—of—script
set term postscript

set out "redirect_test.ps"
plot sin(x)

end—of—script

The end-of-script marker can be any string (EOF is a popular choice), and indi-
cates when the script will end. Everything from the first line until the concluding
string (on its own line) is sent to Gnuplot as if it were typed in directly.

% stderr There is one more stream after stdin and stdout: stderr, which is

intended to print error messages or diagonstics to the screen, even when

stdout is dumping data to a file. There are reasons to redirect this stream as well,

such as when your program is producing so many errors that they scroll faster than
you can read them.

* In csh, use >& anywhere you would use > to redirect both stdout and stderr to
the given destination, e.g., make >& errors.txt.

* In bash, write stderr to a file is to use 2> as you would > above. For example,
make 2>errors.txt will dump all compilation errors to the errors.txt file.

% Streams and C  C and UNIX co-evolved, so all of the above methods of redi-
recting inputs and outputs have an easy C implementation.

As you saw on pages 166ff, you can use fprintf to send data to a file or another
program. You may have noticed the close similarity between opening/writing to a
file and opening/writing to a pipe:

FILE «f = fopen("write_to_me", "w");

FILE =g = popen("gnuplot", "w");

fprintf(f, "The waves roll out.\n");

fprintf(g, "set label *The waves roll out.”;set yrange [—1:1]; plot —1");
fclose(f);

pelose(g);

If this code were in a program named water, then the fopen and fprintf instruc-
tions are analogous to water > write_to_me. The popen and fprintf pair are
analogous to water | gnuplot.
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This book has spent little time on the subject of reading data from stdin (look
up fscanf in your favorite C reference), but by changing the "w"s to "r's in the
above code, the flow of data is from the FILE* to the program itself, analogous to
water < write_to_me and gnuplot | water.

Modify getopt. c to filter its output through grep.

Q * Popen grep ’6$’ for writing.
B3

* Modify the printf statement to an fprintf statement.

The three standard pipes are defined by C’s standard library, and can be used as
you would any other popened stream. That is, fprintf (stdout, "Data forth-
coming:\n") and fprintf (stderr, "danger!\n") will write to stdout and
stderr as expected. What is the difference between fprintf (stdout, "data")
and printf ("data")? There is none; use whichever form is most convenient for
your situation.

Finally, there is the system function, which simply runs its argument as if it were
run from the command line. Most POSIX machines come with a small program
named fortune, that prints fortune-cookie type sayings. Most of us can’t eat just
one, but consume a dozen or so at a time. Listing B.2 shows a program that auto-
mates the process via a for loop. The program does not use printf and does not
#include <stdio.h>, because the C program itself is not printing anything—the
child programs are.?

#include <stdlib.h>

int main(){
for (int i=0; i< 12; i++){
system("fortune");
system("echo");
system("sleep 6");

Listing B.2 Print fortunes. Online source: fortunate.c.

There are two differences between a system command and a popen command.
First, there is the fact that there is no way for the rest of the program to access
system’s input and output, while popen allows input or output from within the

2This program is longer than it needs to be, because all three system lines could be summarized to one:
system("fortune; echo; sleep 6");. Notice also that the apop_system convenience function allows you
to give a command with printf-style placeholders; e.g., apop_system("cp %s %s", from_file, to_file).
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program. But also, system will stop your program and wait for the child program
to finish, while popen will open the pipe and then move on to the next step in your
program. So if the command has to finish before you can continue, use system,
and if the command is something that should run in the background or should wait
for data to become available, use popen.

» All programs have standard inputs and outputs, which are by default
the keyboard and screen.

» Both stdin and stdout can be redirected. stdin can read from a
file using the < 4nfile form; stdout can write to a file using the
> outfile form. Use > outfile to overwrite and >> outfile to

z append.

» Programs can send their output to other programs using the pipe, |.

» You can do redirection from inside C, using fopen to effect the
command-line’s < infile and > outfile, and popen to open a

pipe.

B.2 SOME TOOLS FOR Depending on your system, you can type somewhere

SCRIPTING between a few hundred and a few thousand commands

at the command prompt. This section points out a few

that are especially useful for the purposes of dealing with data in text format; they

are summarized in Table B.3. All but a few (column, egrep, perl) are POSIX-

standard, and you can expect that scripts based on the standard commands will

be portable. The basic file handling functions (mkdir, 1s, cp, ...) are listed for

reference, but are not discussed here. If you are not familiar with them, you are

encouraged to refer to any of an abundance of basic UNIX and POSIX tutorials
online or in print (e.g., Peek et al. (2002)).

Most of these commands are in some ways redundant with methods elsewhere in
the book: you could use cut to pull one column of data, or you could read the data
into a database and select the column; you could use wc to count data points, or
use select count(*) to do the same.® Generally, command-line work is good
for pure text manipulation and quick questions (e.g., do I have the thousands of
data points I was expecting?), while you will need to write a program or query for
any sort of numeric analysis or to answer more detailed questions about the data
(e.g., how many rows are duplicates?).*

3 There is even a join command, which will do database-style joins of two files. However, it is hard to use
for any but clean numeric codes. For example, try using join to merge data-wb-pop and data-wb-gdp.

“apop_query_to_double("select count(*) from data") - apop_query_to_double("select
count(*) from (select distinct * from data)")
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mkdir/rmdir
cd

1s

cp/mv

rm

cat
head/tail
less/more
column

sort
cut/paste
nl

uniq

man
WwC
diff

sed
grep/egrep
perl

Basic file handling

Make or remove a directory
Change to a new current directory
List directory contents

Copy or move/rename a file
Remove a file

Reading

List a file, or concatenate multiple files
List only the first/last few lines of a file
Interactively browse through a file
Display a file with its columns aligned

Writing

Sort

Modify files by columns rather than lines
Put a line number at the head of each line
Delete duplicate lines

Information

Manual pages for commands
Count words, lines, or characters
Find differences between two files

Regular expressions

Stream editor: add/delete lines, search/replace
Search a file for a string

All of the above; used here for search/replace

Table B.3 Some commands useful for handling text files.

399
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man What does the 755 in chmod 755 do? Ask man chmod. What did the echo com-
mand in Listing B.2 do? Try man echo. The manual pages list the basic function
of a program and its various switches. They are not a very good way to learn to use

a POSIX system, but are the definitive reference for command-line details.

cat The simplest thing you could do with a text file is print it, and this is what
cat does. Instead of opening a file in your text editor, you can simply type cat
file_to_read on the command prompt for a quick look.

The other use of cat, for which it was named, is concatenation. Given two files a
and b, cat a b > c writes a and, immediately thereafter, b, into c.

less/more These are the paging programs, useful for viewing longer files. The POSIX
standard, more, is so named because for files of more than a screenful of
text, it displays a page of text with a banner at the bottom of the screen reading
more. The successor, less, provides many more features (such as paging up as
well as down). These programs can also read from stdin, so you can try combi-
nations like sort data_file | less.

head/tail head myfile will print the first ten lines of myfile, while tail myfile

will print the last ten. These are good for getting a quick idea of what is

in a large file. Also, tail -f myfile will follow myfile, first showing the last

ten lines, and then updating as new lines are added. This can provide reassurance
that a slow-running program is still working.

sed The stream editor will be discussed in much more detail below, but for now it
suffices to know that it can be used to replicate head or tail. The command sed
-n ’1,3p’ < a_file will print the first through third lines of a_file. The last
line is indicated by $, sosed -n ’2,%p’ < a_file will print the second through
last lines of the file.

sort This is as self-descriptive as a command can get. The data-wb-pop file (in the

code supplement) is sorted by population; sort data-wb-pop would output

the file in alphabetical order. Sort has many useful switches, that will sort ignoring

blanks, by the second (or nth) column of data, in reverse order, et cetera. See man
sort for details.
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Sorting data-wb-pop like this sorts the two header lines in with all the

Q B4 countries. Write a command that first calls sed to delete the headers, then

pipes the output to sort.

cut/paste Almostall of the commands here operate on rows; cut and paste operate

on columns. Specify the delimiter with the -d flag, and then the field(s)
with the -f flag (where the first column is column one, not zero). To get a list of just
countries from the World Bank data, try cut -d"|" -f 1 data-wb-pop; if you
would like to see just the population numbers, use cut -d"|" -f 2 data-wb-pop.

paste puts its second input to the right of its first input—it is a vertical version of
cat.

Use the command string from the last exercise to sort the population
and GDP data into two new files. cut the second file down to include

@ only the column of numbers. Then use paste sorted_pop sorted_gdp>
B.5

wC

nl

combined_data to produce one file with both types of data. Verify that the
lines of data are aligned correctly (i.e., that the Albania column does not list
the GDP of Algeria).

This program (short for word count) will count words, lines, and characters. The
default is to print all three, but we -w, wc -1, and wc -c will give just one of the
three counts.

When writing a text document, you could use it for a word count as usual: wc -w
report.tex. If you have a data file, the number of data points is probably wc -1
data (if there is a header, you will need to subtract those lines).

This program is especially useful in tandem with grep (also discussed at length
below). How many lines of the data-wb-pop file have missing data (which the
WB indicates by . .)? grep ’\.\.’ data-wb-pop will output those lines where
the string . . appears; wc -1 will count the lines of the input; piping them together,
grep ’\.\.’ data-wb-pop | wc -1 will count lines with . .s.

This command puts line numbers at the beginning of every line. Remember that
SQLite puts a rowid on every row of a table, which is invisible but appears if
explicitly selected. But if you want to quickly put a counter column in your data
set, this is the way to do it.
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column [This command is not POSIX-standard, but is common for GNU- or BSD-

based systems.] Text data will be easy to read for either a computer or a
human, but rarely both. Say that a data file is tab-delimited, so each field has ex-
actly one tab between columns:

Name<tab>Age
Rumpelstiltskin<tab>78
Dopey<tab>35

This will read into a spreadsheet perfectly, but when displayed on the screen, the
output will be messy, since Rumpelstiltskin’s tab will not be aligned with Dopey’s.
The column command addresses exactly this problem, by splitting columns and
inserting spaces for on-screen human consumption. For example, column -s"|"
-t data-wb-pop will format the data-wb-pop file into columns, splitting at the
| delimiters. The first column will include the header lines, but you already know
how to get sed to pipe headerless data into column.

diff diff f1 f2 will print only the lines that differ between two files. This can

quickly be overwhelming for files that are significantly different, but after a
long day of modifying files, you may have a few versions of a file that are only
marginally different, and diff can help to sort them out. By the end of this chap-
ter, that will be the case, so various opportunities to use diff will appear below.
EMACS, vim, and some IDEs have modes that run diff for you and simultaneously
display the differences between versions of a file.

To give another use, say that you have a running program, but want to clean up
the code a little. Save your original to a backup, and then run the backup pro-
gram, writing the output to outI. Then clean up the code as you see fit, and run
the cleaned code, writing to out2. If you did no damage, then diff outl out2
should return nothing.

uniq This program removes many duplicate lines from a file. uniq dirty > clean

NN R W=

will write a version of the input file with any successive duplicate lines deleted.
For example, given the input

g

2000 g
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the output will omit line five but leave the remainder of the file intact. If order
does not matter, then sort your_file | uniq will ensure that identical lines
are sequential, so uniq will easily be able to clean them all. Alternatively, read the
file to a database and use select distinct * from your_table.

B.3 REGULAR EXPRESSIONS  The remainder of this appendix will cover pro-

grams to parse regular expressions. Regular

expressions comprise a language of their own, which provides a compact means

of summarizing a text pattern. Knowledge of regexes comes in handy in a wide

variety of contexts, including standard viewers like less, a fair number of online

search tools, and text editors like vi and EMACS. Entire books have been written on
this one seemingly small subject, the most comprehensive being Friedl (2002).

This chapter will use grep, sed, and Perl because it is trivial to use them for regular
expression parsing and substitution from the command line. Other systems, such
as C or Python, require a regex compilation step before usage, which is nothing
but an extra step in a script or program, but makes one-line commands difficult.

% Standard syntax, lack thereof = Unfortunately, there are many variants on the

regex syntax, since so many programs process

them, and the author of each program felt the need to make some sort of tweak

to the standard. Broadly, the basic regular expression (BRE) syntax derives from

ed, a text editor from back when the only output available to computers was the

line printer. Most POSIX utilities, such as sed or grep or awk, use this basic regex
syntax.

There is a barely-modified variant known as extended regular expression (ERE)
syntax, available via egrep and a switch to many other utilities. New features like
the special meaning of characters like (, ), +, or | evolved after a host of BRE
programs were already in place, so in the BRE syntax, these characters match an
actual (, ), +, or | in the text, while they can be used as special operators when
preceded by a backslash (e.g., \+, \ |, ...). EREs used these characters to indicate
special operations from the start, so + is a special operator, while \+ indicates a
plain plus sign (and so on for most other characters).

The scripting language Perl introduced a somewhat expanded syntax for regular
expressions with significantly more extensions and modifications, and many post-
Perl programs adopted Perl-compatible regular expressions (PCRES).

This chapter covers Perl and GNU grep and sed as they exist as of this writing, and
you are encouraged to check the manual pages or online references for the subtle
shifts in backslashes among other regular expression systems.
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THE BASIC SEARCH The simplest search is for a literal string of text. Say that you
have a C program, and are searching for every use of a vari-

able, var. You can use the command-line program grep to search for var among
your files.> The syntax is simple: grep war *.c will search all files in the current
directory ending in . c for the string var, and print the result on the command line.

This is already enough to do a great deal. In olden times, programmers would
keep their phone book in a simple text file, one name/number per line. When
they needed Jones’s number, they could just run grep Jones my_phone_book
to find it. If you need to know Venezuela’s GDP, grep will find it in no time: grep
Venezuela data-wb-gdp.

Use grep to search all of your .c files for uses of printf.
Q The -C n option (e.g., grep -C 2) outputs n context lines before and after
B.6 the match; repeat your search with two context lines before and after each
printf.

Bracket expressions  Now we start to add special characters from the regex lan-

guage. An expression in square brackets always represents

a single character, but that single character could be one of a number of choices.

For example, the expression [fs] will match either £ or s. Thus, the expression

[fs]printf will match both fprintf or sprintf (but not printf), so grep

[fs]printf #*.c will find all such uses in your C files. More bits of bracket ex-
pression syntax:

* You can use ranges: [A-Z] searches for English capital letters, [A-Za-z] searches
for English capital or lowercase letters, and [0-9] matches any digit.

* You can match any character except those in a given list by putting ~ as the first
item in the bracketed list. Thus, ["fs] matches one single character that is not £
6
or s.

e There are a few common sets of characters that are named for the POSIX utili-
ties. For example, [[:digit:]] will search for all numbers, [0-9]. Notice that
[:digit:] is the character class for digits, so [[:digit:]] is a bracket expres-
sion matching any single digit. See Table B.4 for a partial list. These character sets
are locale-dependent. For example, U is not in [A-Z], but if it is a common letter
in the language your computer speaks, then it will be an element of [:alpha:].

5The name comes from an old ed command (we’ll meet ed later) for global regular expression printing:
g/re/p. Many just take it as an acronym for general regular expression parser.

SIf you are searching for the ~ character itself, just don’t put it first in the bracket. Conversely, if you need a
literal dash that does not indicate a range, put it first. To find all lines with carats or dashes, try grep "[-"1"
myfile.
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POSIX Perl English

[:digit:] \d Numeric characters.

[:alpha:] Alphabetic characters.

[:upper:] Uppercase alphabetic characters.

[:1lower:] Lowercase alphabetic characters.

[:alnum:] \w Alphanumeric characters.

[:blank:] Space and tab characters.

[:space:] \s Any white space, including space, tab (\t),
newline (\n).

[:punct:] Punctuation characters

[:print:] Printable characters, including white space.

[:graph:] Printable characters, excluding white space.

\D, \W, \S Not numeric chars, not alphanumeric chars,

not white space

Table B.4 Some useful regular expression character sets.

chars main regex meaning meaning in brackets
[ 1 Bracketexpression as [: :], anamed group
" Beginning of line don’t match following chars
. Any character plain period
- A plain dash arange, e.g., 0-9

Table B.5 Some characters have different meanings inside and outside brackets.

All of these can be combined into one expression. For example,

[[—+6E[:digit:]]

will match any digit, a minus or plus, or the letter e. Or, if you named a variable
opt butgrep opt *.c spits out too many comment lines about options, try grep
opt["i] *.c.

Brackets can be a bit disorienting because there is nothing in the syntax to visually
offset a group from the other elements in the bracket, and no matter how long the
bracketed expression may be, the result still represents exactly one character in the
text. Also, as demonstrated by Table B.5, the syntax inside brackets has nothing to
do with the syntax outside brackets.
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Regular expressions are vehemently case-sensitive. grep perl search_me will
not turn up any instances of Perl. The first option is to use the -i command-line
switch to search without case: grep -i perl search_me. The second option, oc-
casionally useful for more control, is to use a bracket: grep [Pplerl search_me.

Alternatives  Recall that Apophenia includes various printing functions, such as

apop_data_print and apop_matrix_print. Say that you would

like to see all such examples. Alternatives of the form A or B are written in ba-

sic regex notation as (A|B). Notice how this analogizes nicely with C’s (A|IB)
form.

This is where the various flavors of regular expression diverge, and the backslashes
start to creep in. Plain grep uses BREs, and so needs backslashes before the parens
and pipe: \ (A\ |B\). When run as grep -E, grep uses EREs. Most systems have
an egrep command that is equivalent to grep -E.’

Also, recall the difference between ‘single-ticks’ and “double-ticks” on the com-
mand line, as discussed in the box on page 395: the single-tick form does not treat
backslashes in a special manner, so for example, you can find a single literal period
with 7\ . instead of "\ \ .".

All that said, here are a few commands that will search for both apop_data_print
and apop_matrix_print:

grep "apop_\\(data\\lmatrix\\)_print" s.c
grep “apop_\(data\lmatrix\)_print’ *.c
grep —E "apop_(datalmatrix)_print" x.c
egrep "apop_(datalmatrix)_print" *.c

A few special symbols  You sometimes won’t care at all about a certain segment.
A dot matches any character, and you will see below that
a star can repeat the prior atom. Therefore

[grep ’apop.#_print’ *.c

will find any line that has apop, followed by anything, eventually followed by
_print.

* Once again, the symbols . and * mean different things in different contexts. In a
regex, the dot represents any character, and the star represents repetition; on the

7Officially, egrep is obsolete and no longer part of the POSIX standard.
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command line (where wildcard matching is referred to as globbing), the dot is just
a dot, and the star represents any character.

The caret and dollar sign (" and $) indicate the beginning and end of the line,
respectively. grep "“int" *.c will only match lines where int is right at the
beginning of the line, and grep "{$" *.c will only match open-braces at the end
of the line.?

A single space or tab are both characters, meaning that a dot will match them. In
grep, the atom \W will match any single space or tab, and the atom \w will match
anything that is not white space. Since there are frequently an unknown bunch of
tabs and spaces at the head of code files, a better way to search for int declarations
would be

[grep "MWint’ #.c

» The quickest way to search on the command line is via grep. The
syntax is grep ’regular expression’ files_to_search.

» Without special characters, grep simply searches for every line that
matches the given text. To find every instance of fizme in a file: grep
> fizme’ filename.

» A bracketed set indicates a single character.

— The set can include single characters: [Pp]erl matches both
Perl and perl (though you maybe want a case-insensitive
search with grep -1i).

— The set can include ranges: [A-Za-z] will match any standard
English letter.

— The set can exclude elements: ["P-S] will find any character
except P, Q, R, and S.

» Express alternatives using the form (A|B).

» Different systems have different rules about what is a special charac-
ter. The ERE/PCRE form for alternation used by egrep and perl is
(A|B); the BRE form used by grep is \ (A\ IB\).

» A single dot (.) represents any character including a single space or
tab, and grep understands \W to mean any white space character and
\w to mean any non-white space character.

81t is difficult to search across lines. Perl has the m option (m//). A more reliable and universal option is to
simply remove newlines, turning your input stream into a single long line. The easiest way to do this is via a
form like tr >\n’ ’|’ < infile | grep ..., where tr translates elements of the first set (in this case, the
newline) into the elements of the second (the pipe).
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REPLACING grep is wonderful for searching, but is a purely read-only program. If

you want to change what you find, you will need to use a more com-

plex program, such as perl or sed (the stream editor). sed will easily handle 95%

of data-filtering needs, but perl adds many very useful features to the traditional

regular expression parsing syntax. If you find yourself using regexes frequently,

you may want to get to know how they are handled in a full Perl-compatible regex

scripting system like Python, Ruby, or Perl itself. These programs complement C

nicely, because they provide built-in facilities for string handling, which is decid-
edly not C’s strongest suit.

Perl and sed syntax sed is certainly installed on your system, since it is part of

the POSIX standard; perl is almost certainly installed, since

many modern system utilities use it. If it is not installed, you can install it via your
package manager.

Both programs generally expect that you will use a command file, but you can also
give a command directly on the command line via the -e command.

For example,

[perl —e ’print "Hello, world.\n"’

will run the Perl command print "Hello, world.\n".

sed always operates on an input file, so we might as well start by emulating grep:’
[sed —n —e ’/regex/p’ < file_to_search

Sed likes its regexes between slashes, and the p is short for print, so the command
/regex/p means ‘print every line that matches regez.” Sed’s default is to print
every input line, and then the print command will repeat lines that match regez,
which leads for massive redundancy. The -n command sets sed to print only when
asked to, so only matching lines print.

Generally, a sed command has up to three parts: the lines to work on, a single letter
indicating the command, and some optional information for the command.

Above, the specification of lines to work on was a regular expression, meaning that
the command (p) should operate only on those lines that match /regex/.

9As you saw in the sed examples in the section on redirection, the -e flag is optional using this form, but it
never hurts.
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* You can replace this regex with a fixed set of lines, such as 1,10 to mean the first
ten lines.

* In this context, $ means the last line of the file, so 11,$p would print everything
but the first ten lines.

* You can print everything but a given set of lines using an ! after the range, so
1,10!p would also print everything but the first ten lines.'?

The box presents the five single-letter .se'd commands dis- Sed commands
cussed here; sed has a few more but this is already enough
for most relevant work. The third part of the command, p  Print.
following the single-letter command, will vary depending s Substitute.
on the command. As in the examples above, the third part d Delete.
is blank for the p command. i Insert before.

a  Append after.

Search and The basic syntax for a search and replace is s/replace me/with

replace syntax me/g. The slashes distinguish the command (s), the text to search
(replace me), the text for replacement (with me), and the modi-
fiers (the g; see box).!!

If you have only one file to scan, you can use these programs as filters:

perl —p —e "s/replace me/with me/g" <file_to_modify >modified_file
sed —e "s/replace me/with me/g" <file_to_modify >modified_file

Per% S -p SWltCh is the opposite of Why the /g?
sed’s -n switch. As opposed to sed,
Perl’s default is to never print unless Back when regexes were used for real-time editing

the pattern matches, which means of files, it made sense to fix only one instance of an
that if you do not give it the -p expression on a line. Thus, the default was to modify

. L. . only the first instance, and to specify replacing only
switch, it will pass over any line that the second instance of a match with s/.../.../2,

does not match the regex. With -P the third instance withs/.../.../3, and all instances
non-matching lines appear as-is and | with s/.../.../g (global). This is still valid syntax
lines that match have the appropri- | that is occasionally useful, but when filtering a data
ate substitutions made’ as we want. file, you will almost always want the /g option.

In this case, sed is doing the right
thing by default, so you do not need the -n switch.

10The ! is used by the bash shell for various command history purposes, and as a result has absolutely perverse
behavior in “double-ticks”, so using ‘single-ticks’ is essential here. To print all the lines not beginning with a #,
for example, use sed -n ’/#/!p’ < infile.

1TA convenient trick that merits a foontote is that you can use any delimiter, not just a slash, to separate the
parts of a search and replace. For example, s|replace me|with me|g works equally well. This is primarily
useful if the search or replace text has many slashes, because using a slash as a delimiter means you will need
to escape slashes in the text—s/\ /usr\/local/\/usr/g—while using a different delimiter means slashes are
no longer special, so s|/usr/locall/usr|g would work fine. The norm is slashes, so that is what the text will
use.
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Since you probably want to search and replace on every line in the file, there
is nothing preceding the single-letter command s. But if you want to replace
replace me only on lines beginning with #, you can specify the sed command
/#/ s/replace me/with me/g. In this case, sed is taking in two regular expres-
sions: it first searches vertically through the file for lines that match #. When it
finds such a line, it searches horizontally through the line for replace me.

Say that your database manager does not accept pipe-delimited text,

Q but wants commas instead. Write a script to replace every pipe in the

B.7 | data-classroom file with a comma. Then modify the script to replace only
the pipes in the data, leaving the pipe in the comments unchanged.

Another alternative is to replace-in-place, using the -i switch:!?

perl —p —i.bak —e ’s/replace me/with me/g’ files_to_modify
sed —i.bak —e ’s/replace me/with me/g’ files_to_modify

With the -i option, Perl and sed do not write the substitutions to the screen or the
> file, but make them directly on the original file. The . bak extension tells Perl and
sed to make a backup before modification that will have a .bak extension. You
may use any extension that seems nice: e.g., -1~ will produce a backup of a file
named test that would be named test ™. If you specify no suffix at all (-1), then
no backup copy will be made before the edits are done. It is up to you to decide
when (if ever) you are sufficiently confident to not make backups.'?

Create a file named about_me with one line, reading I am a teapot. Use
Q B8 either perl or sed to transform from a teapot to something else, such as a
kettle or a toaster. Verify your change using diff.

You are welcome to include multiple commands on the line, by the way. In perl,
separate them with a semicolon, as in C. In sed or perl, you may simply specify
additional -e commands, that will be executed in order—or you can just use a

pipe.
perl —pi.bak —e ’s/replace me/with me/g; s/then replace this/with this/g’ files_to_modify

perl —pi.bak —e ’s/replace me/with me/g’ —e’s/then replace this/with this/g’ files_to_modify
sed —i.bak —e ’s/replace me/with me/g’ —e’s/then replace this/with this/g’ files_to_modify

12The -i switch is not standard in sed, but works on GNU sed, which you probably have. Bear this in mind
if you are concerned about a script’s portability.

131f editing a file in place is so difficult, how does sed do it? By writing a new file and then switching it for
the original when it is finished. So if you are filtering a 1GB file ‘in place” with no backup and you do not have
1GB of free space on your hard drive, you will get a disk full error.
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perl —p —e ’s/replace me/with me/g’ < modify_me | perl —p —e’s/then replace this/with this/g’
>modified_version

sed ’s/replace me/with me/g’ <modify_me | sed ’s/then replace this/with this/g’ >
modified_version

Replacing with modifications  Parentheses, used above to delimit conditional seg-

ments, can also be used to store sections for later

use. For example, say that your file reads There are 4 monkeys at play, but

your copyeditor feels that the sentence as written is imprecise. You forgot the

number of monkeys, so you are tempted to use s/[0-9] monkeys/Callimico
goeldii/g—but this will lose the number of monkeys.

However, you can put a segment of the search term in parentheses, and then use
\1in sed or $1 in Perl to refer to it in the replacement. Thus, the correct command
lines for replacing an unknown number of monkeys are

sed —i~ —e "s/\([0—9]%\) monkeys/\1 Callimico goeldii/g’ monkey_file
sed —r —i~ —e ’s/([0—9]*) monkeys/\1 Callimico goeldii/g’ monkey_file
perl —p —i~ —e ’s/([0—9]*) monkeys/$1 Callimico goeldii/g’ monkey_file

* The \1 or $1 will be replaced by whatever was found in the parentheses ([0-9] *).

* sed normally uses BREs, but the GNU version of sed uses EREs given the -r
flag.

If there are multiple substitutions to be made, you will need higher numbers.
Say that we would like to formalize the sentence the 7 monkeys are fighting
the 4 lab owners. Do this using multiple parens, such as

sed —i~ —e "s/\([0—9]x\) monkeys are fighting the \([0—9]x\) lab owners/A\1 Callimico goeldii
are fighting the \2 Homo sapiens/g’ monkey_file

Repetition  Say that values under ten in the data are suspect, and should be replaced

with "NaN". The search s/[0-9]1/"NaN"/g won’t work, because 45

will be replaced by "NaN""NaN", since both 4 and 5 count as separate matches. Or

say that values over ten are suspect. The search s/[1-9] [0-9]/"NaN"/g won’t

work, because 100 would be replaced by "NaN"0. We thus need a means of speci-
fying repititions more precisely.

Here are some symbols to match repetitions or to make an element optional.
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*  the last atom appears zero or more times
+ the last atom appears one or more times (GNU grep/sed: \+)
? the last atom appears zero or one times (GNU grep/sed: \7)

To replace all of the integers less than 100 in a file:

perl —pi~ —e *s/([*0—9]I")([0—9][0—9]?)([*0—9]N$)/$ 1NaN$3/g’ search_me
sed —i~ "sA([*0—9NM)\([0—9]1[0—IN?)N([0—INSVAINaN\3/g’ search_me
sed —r —i~ "s/([*0—9]1I")([0—9][0—9]?)([*0—9]I$)\1NaN\3/g’ search_me

This is a mess, but a very precise mess (which will be made more legible below).

* The first part, ([70-9]|") will match either a non-numeric character or the be-
ginning of the line.

e The second part, ([0-9][0-9]7), matches either one or two digits (but never
three).

* The third part, ([*0-9] |$) will match either a non-numeric character or the end
of the line.

Thus, we have precisely communicated that we want something, then an integer
under 100, then something else. Since the search string used three sets of parens,
the output string can refer to all three. It repeats the first and last verbatim, and
replaces the second with NaN, as desired.

Structured regexes  Chapter 2 presented a number of techniques for writing code
that is legible and easy to debug:

* Break large chunks of code into subfunctions.
* Debug the subfunctions incrementally.

» Write tests to verify that components act as they should.

All of this applies to regular expressions. You can break expresssions down using
variables, which your shell can then substitute into the expression. For example
the illegible regexes above can be somewhat clarified using a few named subex-
pressions. This is the version for bash or csh.'*

4You can also replace variables in the shell using a form like ${digits}. This is useful when the vari-
able name may merge with the following text, such as a search for exponential numbers of a certain form:
${digits}teddigits.
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notdigit="\([*0—9N"™I$\)’

digits="\([0—9][0—9]\\)’
replacecmd="s/$notdigit$digits$notdigit A\ NaN\3/g"
sed —i~ $replacecmd search_me

The echo command is useful for testing purposes. It dumps its text to stdout, so
it makes one-line tests relatively easy. For example:

echo 123 | sed $replacecmd
echo 12 | sed $replacecmd
echo 00 | sed $replacecmd

Modify the search to include an optional decimal of arbitrary length. Write
a test file and test that your modification works correctly.

Qs

B.4 ADDING AND DELETING  Recall the format for the sed command to print
a line from page 408: /find_me/p. This con-
sists of a location and a command. With the slashes, the location is: those lines
that match find_me, but you can also explicitly specify a line number or a range
of lines, such as 7p to print line seven, $p to print the last line of the input file, or

1, $p to print the entire file.

You can use the same line-addressing schemes with d to delete a line. For example,
sed "$d4" <infile will print all of infile but the last line.

Q Use d to produce a version of data-classroom with the comments re-
B.10 | moved.

You can also use i to insert above the given line(s), and a to append after the given
line. A few examples:

#Add a pause after a Gnuplot data block

sed —i~ —e "/"e$/ a pause pauselength" plotfile

#Put the text plot *—’ at the head of a file.

sed —i~ —e "1 i plot *—"" plotfile

#Pretend missing data does not exist

sed —i~ —e "/NaN/ d" plotfile

By the way, if you really want to get sed to print “Hello, world” you can do it by
inserting at line one and ignoring the rest of the file:

[sed —n —e "1 i Hello, world." < any_random_file



414

gsl_stats March 24, 2009

APPENDIX B

Perl can do all of these things easily from inside a Perl script, but inserting and
deleting lines from the command line is not as pleasant as using sed.!?

Qs

QB.12

Refer to the exercise on page 184, which read in a text file and produced
a Graphviz-readable output file. That exercise read the text to an apop_-
data set and then wrote the output, which is sensible when pulling many
classes from a database. But given the text file data-classroom in the code
supplement, you can modify it directly into Graphviz’s format. Write a sed
script to

* Delete the header line.
* Replace each pipe with a ->.

* Replace each number n with noden.

Add a header (as on page 184).

Add the end-brace on the last line.

Pipe your output through neato to check that your processing produced a
correctly neato-readable file and the right graph.

Turn the data-classroomn file into an SQL script to create a table.
* Delete the header line.

* Add a header create table class(ego, nominee). [Bonus
points: write the search-and-replace that converts the existing header
into this form.]

* Replace each pair of numbers n |m with the SQL command insert
into class(n, m);.

* For added speed, put a begin;—commit ; wrapper around the entire
file.

Pipe the output to sqlite3 to verify that your edits correctly created and
populated the table.

15 A reader recommends the following for inserting a line:
perl -n -e ’print; print "pause pauselength" if /“e$/’
For adding a line at the top of a file:
perl -p -e ’print "plot ’-’\n" unless $a; $a=1’
For deleting a line:
perl -n -e ’print unless /Nal/’
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» Your best bet for command-line search-and-replace is perl or sed.
Syntax: perl -pi "s/replace me/with me/g" data_file or
sed -i "s/replace me/with me/g" data_file.

» If you have a set of parens in the search portion, you can refer to it in
z Perl’s replace portion by $1, $2, ...; and in sed’s replace via \ 1, \ 2,

» The *, +, and 7 let you repeat the previous character or bracketed
expression zero or more, one or more, and zero or one times, respec-
tively.

B.S MORE EXAMPLES Now that you have the syntax for regexes, the applica-
tions come fast and easy.

Quoting and unquoting  Although the dot (to match any character) seems conve-
nient, it is almost never what you want. Say that you are
looking for expressions in quotes, such as "anything". It may seem that this
translates to the regular expression " . *", meaning any character, repeated zero or
more times, enclosed by quotes. But consider this line: "first bit", "second
bit". You meant to have two matches, but instead will get only one: first bit",
"second bit, since this is everything between the two most extreme quotes. What
you meant to say was that you want anything that is not a " between two quotes.
That is, use "[“"]+", or "[""]*" if a blank like "" is acceptable.

Say that the program that produced your data put it all in quotes, but you are
reading it in to a program that does not like having quotes. Then this will fix the
problem:

[perl —pi~ —e ’s/"([""]%)"/$1/g’ data_file

Getting rid of commas  Some data sources improve human readability by separat-
ing data by commas; for example, data-wb-gdp reports
that the USA’s GDP for 2005 was 12,455,068 millions of dollars. Unfortunately,
if your program reads commas as field delimiters, this human-readability conve-
nience ruins computer readability. But commas in text are entirely valid, so we
want to remove only commas between two numbers. We can do this by searching
for a number-comma-number pattern, and replacing it with only the numbers. Here

are the sed command-line versions of the process:
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sed —i~ "sA([0—9]V),\([0—9]VA1\2/g’ fixme.txt
sed —r —i~ "s/([0—9]),([0—9DA1\2/g’ fixme.txt

Suspicious non-printing ~ Some sources like to put odd non-printing characters in

characters their data. Since they don’t print, they are hard to spot,

but they produce odd effects like columns in tables with

names like pop(JOE(Jtion. Itis a hard problem to diagnose, but an easy problem to

fix. Since [:print:] matches all printing characters, [~ [:print:]1] matches all

non-printing characters, and the following command replaces all such characters
with nothing:

[sed —i~s/[*:print:]]//g’ fixme.txt

Blocks of delimiters ~ Some programs output multiple spaces to approximate tabs,
but programs that expect input with whitespace as a delimiter
will read multiple spaces as a long series of blank fields.'® But it is easy to merge
whitespace, by just finding every instance of several blanks (i.e., spaces or tabs) in

a row, and replacing them with a single space.

[sed —i~"s/[[:blank:]]\+/ /g’ datafile

You could use the same strategy for reducing any other block
of delimiters, where it would be appropriate to do so, such as

s/,+t/,/.

Alternatively, a sequence of repeated delimiters may not need merging, but may
mark missing data: if a data file is pipe-delimited, then 7|3 may be the data-
producer’s way of saying 7|NaN|3. If your input program has trouble with this,
you will need to insert NaN’s yourself.

This may seem easy enough: s/ ||/ |NaN|/g. But there is a catch: you will need
to run your substitution twice, because regular expression parsers will not over-
lap their matches. We expect the input ||| to invoke two replacements to form
| NaN | NaN |, but the regular expression parser will match the first two pipes, leav-
ing only a single | for later matches; in the end, you will have |NaN|| in the output.
By running the replacement twice, you guarantee that every pipe finds its pair.

[sed —i~ datafile —e ’s/Il/INaNI/g’ —e ’s/Il/INaNl/g’

16The solution at the root of the problem is to avoid using whitespace as a delimiter. I recommend the pipe, |,
as a delimiter, since it is virtually never used in human text or other data.
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Text to database The apop_text_to_db command line program (and its corre-

sponding C function) can take input from stdin. Thus, you can

put it at the end of any of the above streams to directly dump data to an SQLite
database.

For many POSIX programs that typically take file input, the traditional way to
indicate that you are sending data from stdin instead of a text file is to use - as
the file name. For example, after you did all that work in the exercise above to
convert data to SQL commands, here is one way to do it using apop_text_to_-
db:"7

[sed ’[#/ d” data—classroom | apop_text_to_db ’—’ friends classes.db
gnuplot

Database to plot  Apophenia includes the command-line program apop_plot_-
query, which takes in a query and outputs a Gnuplottable file. It
provides some extra power: the -H option will bin the data into a histogram before
plotting, and you can use functions such as var that SQLite does not support. But

for many instances, this is unnecessary.

SQLite will read a query file either on the command line or from a pipe, and Gnu-
plot will read in a formatted file via a pipe. As you saw in Chapter 5, turning a
column of numbers (or a matrix) into a Gnuplottable file simply requires putting
plot ’-’ above the data. If there is a query in the file queryfile, then the se-

quence is:
[sqlite3 —separator " " data.db < queryfile | sed "1 i set key off\nplot *—"" | gnuplot —persist
The -separator " " clause is necessary because Gnuplot does not like pipes as

a delimiter. Of course, if you did not have that option available via sqlite3, you
could justadd -e "s/|/ /" to the sed command.

Write a single command line to plot the yearly index of surface temper-
Q p13 | ature anomalies (the year and temp columns from the temp table of the
data-climate.db database).

17Even this is unnecessary, because the program knows to read lines matching “# as comments. But the
example would be a little too boring as just apop_text_to_db data-classroom friends classes.db.
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UNIX versus Windows: the end of the line  1f your file is all one long line with

no breaks but a few funny characters
interspersed, or has “L’s all over the place, then you have just found yourself in the
crossfire of a long-standing war over how lines should end. In the style of manual
typewriters, starting a new line actually consists of two operations: moving hori-
zontally to the beginning of the line (a carriage return, CR), and moving vertically
down a line (a line feed, LF). The ASCII character for CR is <ctrl-M>, which
often appears on-screen as the single character "M; the ASCII character for LF is
“L.

The designers of AT&T UNIX decided that it is sufficient to end a line with just
a LF, "L, while the designers of Microsoft DOS decided that a line should end
with a CR/LF pair, "M"L. When you open a DOS file on a POSIX system, it will
recognize "L as the end-of-line, but consider the "M to be garbage, which it leaves
in the file. When you open a POSIX file in Windows, it can’t find any "ML pairs,
so none of the lines end.'® As further frustration, some programs auto-correct the
line endings while others do not, meaning that the file may look OK in your text
editor but fall apart in your stats package.

Recall from page 61 that \r is a CR and \n is a LF. Going from DOS to UNIX
means removing a single CR from each line, going from UNIX to DOS means
adding a CR to each line, and both of these are simple sed commands:

#Convert a DOS file to UNIX:
sed —i~ "s/\r$//” dos_file

#Convert a UNIX file to DOS:
sed —i~ "s/$/\r/’ unix_file

Some systems have dos2unix and unix2dos commands that do this for you,!'® but
they are often missing, and you can see that these commands basically run a single
line of sed.

8 Typing * and then M will not produce a CR. "M is a single special character confusingly represented on-
screen with two characters. In most shells, <ctrl-V> means ‘insert the next character exactly as I type it,” so
the sequence <ctrl-V> <ctrl-M> will insert the single CR character which appears on the screen as "M; and
<ctrl-V> <ctrl-L> will similarly produce a LF.

19Perhaps ask your package manager for the dosutils package.
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See also the list of notation and symbols on page 12.

Acronyms

ANSI:
Institute

ASCII: American Standard Code for
Information Interchange

ANOVA: analysis of variance [p 312]
BLAS: Basic Linear Algebra System

BLUE: best linear unbiased estimator
[p 221]

BRE: basic regular expression [p 403]

American National Standards

CDF: cumulative density function [p
236]

CMF': cumulative mass function [p 236]
CLT: central limit theorem [p 296]
df: degree(s) of freedom

ERE: extended regular expression [p
403]

erf: error function [p 284]

GCC: GNU Compiler Collection [p 48]
GDP: gross domestic product

GLS: generalized least squares [p 277]
GNU: GNU’s Not UNIX

GSL: GNU Scientific Library [p 113]
GUI: graphical user interface

IDE: integrated development environ-

ment
IEC: International Electrotechnical
Commission

IEEE: Institute of Electrical and Elec-
tronics Engineers

ITA: independence of irrelevant alterna-
tives [p 286]
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iid: independent and identically dis-
tributed [p 326]

ISO: International Standards Organiza-
tion

IV: instrumental variable [p 275]
LR: likelihood ratio [p 351]
MAR: missing at random [p 345]

MCAR: missing completely at random
[p 345]

MCMC: markov chain Monte Carlo [p
372]

ML: maximum likelihood

MLE: maximum likelihood estima-
tion/estimate [p 325]

MNAR: missing not at random [p 345]
MSE: mean squared error [p 223]
OLS: ordinary least squares [p 270]

PCA: principal component analysis [p
265]

PCRE: Perl-compatible regular expres-
sion [p 403]

March 24, 2009

APPENDIX C
PDF: probability density function [p
236]

PDF: portable document format

PRNG: pseudorandom number genera-
tor [p 357]

PMEF: probability mass function [p 236]

RNG: random number generator [p
357]

SSE: sum of squared errors [p 227]
SSR: sum of squared residuals [p 227]
SST: total sum of squares [p 227]

SQL: Structured Query Language [p
74]

SVD: singular value decomposition [p
265]

TLA: three-letter acronym

UNIX: not an acronym; see main glos-
sary

WLS: weighted least squares [p 277]

Terms

affine projection: A linear projection can always be expressed as a matrix T such
that x transformed is xT'. But any such projection maps 0 to 0. An affine projection
adds a constant, transforming x to xT +k, so 0 now transforms to a nonzero value.
[p 280]

ANOVA: “The analysis of variance is a body of statistical methods of analyzing
measurements assumed to be of the structure [y; = 1,61 +x2; 02+ - - +xpiBp+ei,
i =1,2,...,n], where the coefficients {x; } are integers usually O or 1” (Scheffé,
1959) [p 312]

apophenia: The human tendency to see patterns in static. [p 1]

array: A sequence of elements, all of the same type. An array of text characters is
called a string. [p 30]
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arguments: The inputs to a function. [p 36]

assertion: A statement in a program used to test for errors. The statement does
nothing, but should always evaluate to being true; if it does not, the program halts
with a message about the failed assertion. [p 71]

bandwidth: Most distribution-smoothing techniques, including some kernel den-
sity estimates, gather data points from a fixed range around the point being evalu-
ated. The span over which data points are gathered is the bandwidth. For cases like
the Normal kernel density estimator, whose tails always span (—oo, c0), the term
is still used to indicate that as bandwidth gets larger, more far-reaching data will
have more of an effect. [p 261]

Bernoulli draw: A single draw from a fixed process that produces a one with
probability p and a zero with probability 1 — p. [p 237]

bias: The distance between the expected value of an estimator of 3 and 3’s true
value, |E(3) — (3|. See unbiased statistic. [p 220]

binary tree: A set of structures, similar to a linked list, where each structure con-
sists of data and two pointers, one to a next-left structure and one to a next-right
structure. You can typically go from the head of the tree to an arbitrary element
much more quickly than if the same data were organized as a linked list. [p 200]

BLUE: The Estimator ﬁ is a Linear function, Unbiased, and Best in the sense that
var () < var(Q) for all linear unbiased estimators (3. [p 221]

bootstrap: Repeated sampling with replacement from a population produces a
sequence of artificial samples, which can be used to produce a sequence of iid
statistics. The Central Limit Theorem then applies, and you can find the expected
value and variance of the statistic for the entire data set using the set of iid draws
of the statistic. The name implies that using samples from the data to learn about
the data is a bit like pulling oneself up by the bootstraps. See also jackknife and the
bootstrap principle. [p 367]

bootstrap principle: The claim that samples from your data sample will have
properties matching samples from the population. [p 296]

call-by-address: When calling a function, sending to the function a copy of an
input variable’s location (as opposed to its value). [p 54]

call-by-value: When calling a function, sending to the function a copy of an input
variable’s value. [p 39]
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Cauchy-Schwarz inequality: Given the correlation coefficient between any two
vectors x and y, pxy. it holds that 0 < p% < 1. [p 229]

Central Limit Theorem: Given a set of means, each being the mean of a set of n
iid draws from a data set, the set of means will approach a Normal distribution as
n — o0. [p 297]

central moments: Given a data vector x and mean X, the kth central moment
Nk
of f(-)is 3 oy (f(x) — f(x)) . In the continuous case, if x has distribution

p(z), then the kth central moment of f(z) is [ (f(x) — m>kp(x)dx In

o
both cases, the first central moment is always zero (but see noncentral moment).
The second is known as the variance, the third as skew, and the fourth as kurtosis.
[p 230]

closed-form expression: An expression, say x2 + 3, that can be written down us-
ing only a line or two of notation and can be manipulated using the usual algebraic
rules. This is in contrast to a function algorithm or an empirical distribution that
can be described only via a long code listing, a histogram, or a data set.

compiler: A non-interactive program (e.g., gcc) to translate code from a human-
readable source file to a computer-readable object file. The compiler is often closely
intertwined with the preprocessor and linker, to the point that the preprocessor/-
compiler/linker amalgam is usually just called the compiler. Compare with inter-
preter. [p 18]

conjugate distributions: A prior/likelihood pair such that if the prior is updated
using the likelihood, the posterior has the same form as the prior (but updated
parameters). For example, given a Beta distribution prior and a Binomial likelihood
function, the posterior will be a Beta distribution. Unrelated to conjugate gradient
methods. [p 374]

consistent estimator: An estimator B(x) is consistent if, for some constant c,
lim,, o P(|B(x) — ¢| > €) = 0, for any ¢ > 0. That is, as the sample size
grows, the value of 3(x) converges in probability to the single value c. [p 221]

consistent test: A test is consistent if the power — 1 as n — oco. [p 335]

contrast: A hypothesis about a linear combination of coefficients, like 331 —232 =
0. [p 309]

correlation coefficient: Given the square roots of the covariance and variances,
Oxy» Ox, and oy, the correlation coefficient pyy, = 7y [p 229]

OxOx
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covariance: For two data vectors x and y, 0y, = L5 (@ — %) (v — ). [p 228]
Cramér-Rao lower bound: The elements of the covariance matrix of the estimate
of a parameter vector must be equal to or greater than a limit that is constant for a
given PDF, as in Equation 10.1.7 (page 333). For an MLE, the CRLB reduces to
1/(nl), where I is the information matrix. [p 333]

crosstab: A two-dimensional table, where each row represents values of one vari-
able (y), each column represents values of another variable (), and each (row,
column) entry provides some summary statistic of the subset of data where y has
the given row value and x has the given column value. See page 101 for an exam-
ple. [p 101]

cumulative density function: The integral of a PDF. Its value at any given point
indicates the likelihood that a draw from the distribution will be equal to or less
than the given point. Since the PDF is always non-negative, the CDF is monotoni-
cally nondecreasing. At —oo, the CDF is always zero, and at oo the CDF is always
one. [p 236]

cumulative mass function: The integral of a PMF. That is, a CDF when the dis-
tribution is over discrete values. [p 236]

data mining: Formerly a synonym for data snooping, but in current usage, meth-
ods of categorizing observations into a small set of (typically nested) bins, such as
generating trees or separating hyperplanes.

data snooping: Before formally testing a hypothesis, trying a series of preliminary
tests to select the form of the final test. Such behavior can taint inferential statistics
because the statistic parameter from one test has a very different distribution from
the statistic most favorable parameter from fifty tests. [p 316]

debugger: A standalone program that runs a program, allowing the user to halt
the program at any point, view the stack of frames, and query the program for the
value of a variable at that point in the program’s execution. [p 43]

declaration: A line of code that indicates the fype of a variable or function. [p 28]

degrees of freedom: The number of dimensions along which a data set varies. If
all n data points are independent, then df = n, but if there are restrictions that
reduce the data’s dimensionality, df < n. You can often think of the df as the
number of independent pieces of information. [p 222]

dependency: A statement in a makefile indicating that one file depends on another,
such as an object file that depends on a source file. When the depended-on file
changes, the dependent file will need to be re-produced. [p 388]
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descriptive statistics: The half of probability and statistics aimed at filtering useful
patterns out of a world of overwhelming information. The other half is inferential
statistics. [p 1]

dummy variable: A variable that takes on discrete values (usually just zero or
one) to indicate the category in which an observation lies. [p 281]

efficiency: A parameter estimate that comes as close as possible to achieving the
Cramér—Rao lower bound, and thus has as small a variance as possible, is dubbed
an efficient estimate. [p 220]

error function: The CDF of the Normal(0, 1) distribution. [p 284]

environment variable: A set of variables maintained by the system and passed
to all child programs. They are typically set from the shell’s export or setenv
command. [p 381]

expected value: The first noncentral moment, aka the mean or average. [p 221]

frame: A collection of a function and all of the variables that are in scope for the
function. [p 37]

GCC: The GNU Compiler Collection, which reads source files in a variety of
languages and produces object files accordingly. This book uses only its ability to
read and compile C code. [p 48]

Generalized Least Squares: The Ordinary Least Squares model assumes that the
covariance matrix among the observations is ¥ = ¢2I (i.e., a scalar times the
identity matrix). A GLS model is any model that otherwise conforms to the OLS
assumptions, but allows 3 to take on a different form. [p 277]

globbing: The limited regular expression parsing provided by a shell, such as ex-
panding *.c to the full list of file names ending in .c. Uses an entirely different
syntax from standard regular expression parsers. [p 407]

graph: A set of nodes, connected by edges. The edges may be directional, thus
forming a directional graph. Not to be confused with a plot. [p 182]

grid search: Divide the space of inputs to a function into a grid, and write down the
value of the function at every point on the grid. Such an exhaustive walk through
the space can be used to get a picture of the function (this is what most graphing
packages do), or to find the optimum of the function. However, it is a last resort
for most purposes; the search and random draw methods of Chapters 10 and 11 are
much more efficient and precise. [p 371]
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hat matrix: Please see projection matrix. [p 272]

header file: A C file consisting entirely of declarations and type definitions. By
#include-ing it in multiple C files, the variables, functions, and types declared in
the header file can be defined in one file and used in many. [p 49]

Hessian: The matrix of second derivatives of a function evaluated at a given point.
Given a log likelihood function LL(8), the negation of its Hessian is the informa-
tion matrix. [p 341]

heteroskedasticity: When the errors associated with different observations have
different variances, such as observations on the consumption rates of the poor and
the wealthy. This violates an assumption of OLS, and can therefore produce inef-
ficient estimates; weighted least squares solves this problem. [p 277]

identically distributed: A situation where the process used to produce all of the
elements of a data set is considered to be identical. For example, all data points
may be drawn from a Poisson(0.4) distribution, or may be individuals randomly
sampled from one population. [p 326]

identity matrix: A square matrix where every non-diagonal element is zero, and
every diagonal element is one. Its size is typically determined by context, and it is
typically notated as I. There are really an infinite number of identity matrices (a
1 x 1 matrix, a 2 X 2 matrix, a 3 X 3 matrix, ... ), but the custom is to refer to any
one of them as the identity matrix.

iff: If and only if. The following statements are equivalent: A < B; A iff B;
A = B; Ais defined to be B; B is defined to be A.

iid: Independent and identically distributed. These are the conditions for the Cen-
tral Limit Theorem. See independent draws and identically distributed. [p 326]

importance sampling: A means of making draws from an easy-to-draw-from dis-
tribution to make draws from a more difficult distribution. [p 371]

independence of irrelevant alternatives: The ratio of (likelihood of choice A be-
ing selected)/(likelihood of choice B being selected) does not depend on what
other options are available—adding or deleting choices C, D, and E will not
change the ratio. [p 286]

independent draws: Two events x; and x5 (such as draws from a data set) are
independent if P(x; N z2)—that is, the probability of (x; and z9)—is equal to
P(I‘l) . P(xg) [p 326]
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inferential statistics: The half of probability and statistics aimed at fighting against
apophenia. The other half is descriptive statistics. [p 1]

information matrix: The negation of the derivative of the Score. Put differently,
given a log likelihood function LL (@), the information matrix is the negation of
its Hessian matrix. See also the Cramér—Rao lower bound. [p 326]

instrumental variable: If a variable is measured with error, then the OLS pa-
rameter estimate based on that variable will be biased. An instrumental variable
is a replacement variable that is highly correlated with the measured-with-error
variable. A variant of OLS using the instrumental variable will produce unbiased
parameter estimates. [p 275]

interaction: An element of a model that contends that it is not x; or x5 that causes
an outcome, but the combination of both x; and x» simultaneously (or x; and not
X2, Or not x; but xs). This is typically represented in OLS regressions by simply
multiplying the two together to form a new variable x3 = x; - xa. [p 281]

interpreter: A program to translate code from a human-readable language to a
computer’s object code or some other binary format. The user inputs individual
commands, typically one by one, and then the interpreter produces and executes
the appropriate machine code for each line. Gnuplot and the sqlite3 command-line
program are interpreters. Compare with compiler.

Jackknife: A relative of the bootstrap. A subsample is formed by removing the first
element, then estimating (3;1; the next subsample is formed by replacing the first

element and removing the second, then re-estimating 3;2, et cetera. The multitude
of Bj,’s thus formed can be used to estimate the variance of the overall parameter
estimate 3. [p 131]

join: Combining two database tables to form a third, typically including some
columns from the first and some from the second. There is usually a column on
which the join is made; e.g., a first table of names and heights and a second table
of names and weights would be joined by matching the names in both tables. [p
871

kernel density estimate: A method of smoothing a data set by centering a standard
PDF (like the Normal) around every point. Summing together all the sub-PDFs
produces a smooth overall PDF. [p 262]

kurtosis: The fourth central moment. [p 230]

lexicographic order: Words in the dictionary are first sorted using only the first
letter, completely ignoring all the others. Then, words beginning with A are sorted
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by their second letter. Those beginning with the same first two letters (aandblom,
aard-wolf, aasvogel, ...) are sorted using their third letter. Thus, a lexicographic
ordering sorts using only the first characteristic, then breaks ties with a second
characteristic, then breaks further ties with a third, and so on. [p 91]

library: A set of functions and variables that perform tasks related to some specific
task, such as numeric methods or linked list handling. The library is basically an
object file in a slightly different format, and is typically kept somewhere on the
library path. [p 52]

likelihood function: The likelihood P(X, 3)| is the probability that we’d have
the parameters 3 given some observed data X. This is in contrast to the probability
of a data set given fixed parameters, P(X, 3)| B See page 329 for discussion. [p

326]

likelihood ratio test: A test based on a statistic of the form P, /P,. This is some-
times logged to LL; — LLo. Many tests that on their surface seem to not fit this
form can be shown to be equivalent to an LR test. [p 335]

linked list: A set of structures, where each structure holds data and a pointer to the
next structure in the list. One could traverse the list by following the pointer from
the head element to the next element, then following that element’s pointer to the
next element, et cetera. [p 198]

linker: A program that takes in a set of libraries and object files and outputs an
executable program. [p 51]

Manhattan metric: Given distances in several dimensions, say d,, = |z1 — x| and
dy = |y1 — y2|, the standard Euclidian metric combines them to find a straight-line

distance via ,/d2 + d%. The Manhattan metric simply adds the distance on each

dimension, d; + d,. This is the distance one would travel by first going only along
East—West streets, then only along North—South streets. [p 150]

make: A program that keeps track of dependencies, and runs commands (specified
in a makefile) as needed to keep all files up-to-date as their dependencies change.
Usually used to produce executables when their source files change. [p 387]

macro: A rule to transform strings of text with a fixed pattern. For example, a
preprocessor may replace every occurrence of GSL_MIN(a,b) with ((a) < (b)
? (a) : (b)).[p212]

metadata: Data about data. For example, a pointer is data about the location of
base data, and a statistic is data summarizing or transforming base data. [p 128]
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mean squared error: Given an estimate of 5 named B, the MSE is E(ﬁ - B)2%
This can be shown to be equivalent to var(/3) + bias?(3). [p 220]

memory leak: If you lose the address of space that you had allocated, then the
space remains reserved even though it is impossible for you to use. Thus, the sys-
tem’s usable memory is effectively smaller. [p 62]

missing at random: Data for variable ¢ is MAR if the incidence of missing data
points is unrelated to the existing data for variable 7, given the other variables.
Generally, this means that there is an external cause (not caused by the value of 7)
that causes values of ¢ to be missing. [p 346]

missing completely at random: Data for variable 7 are MCAR if there is no cor-
relation between the incidence of missing data and anything else in the data set.
That is, the cause of missingness is entirely external and haphazard. [p 346]

missing not at random: Data for variable ¢ is MNAR if there is a correlation
between the incidence of missing data and the missing data’s value. That is, the
missingness is caused by the data’s value. [p 346]

Monte Carlo method: Generating information about a distribution, such as pa-
rameter estimates, by repeatedly making random draws from the distribution. [p
356]

multicollinearity: Given a data set X consisting of columns x3, Xo, ..., if two
columns x; and x; are highly correlated, then the determinant of X'X will be
near zero and the value of the inverse (X'X)~! unstable. As a result, OLS-family
estimates will not be reliable. [p 275]

noncentral moment: Given a data vector x and mean X, the kth noncentral mo-

mentis £ 3~ _ 2" In the continuous case, if = has distribution p(z), then the kth
noncentral moment of f(z) is [°°_ f(x)*p(z)dz. The only noncentral moment

anybody cares about is the first—aka, the mean. [p 230]
non-ignorable missingness: See missing not at random. [p 346]

non-parametric: A test or model is non-parametric if it does not rely on a claim
that the statistics/parameters in question have a textbook distribution (¢, x2, Nor-
mal, Bernoulli, et cetera). However, all non-parametric models have parameters
to tune, and all non-parametric tests are based on a statistic whose characteristics
must be determined.

null pointer: A special pointer that is defined to not point to anything. [p 43]
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object: A structure, typically implemented via a struct, plus any supporting func-
tions that facilitate use of that structure, such as the gsl_vector plus the gsl_-
vector_add, gsl_vector_ddot, ..., functions.

object file: A computer-readable file listing the variables, functions, and types
defined in a . c file. Object files are not executables until they go through linking.
Bears no relation to objects or object-oriented programming. [p 51]

order statistic: The value at a given position in the sorted data, such as the largest
number in a set, the second largest number, the median, the smallest number, et
cetera.

Ordinary Least Squares: A model, fully specified on page 274, that contends
that a dependent variable is the linear combination of a number of independent
variables, plus an error term.

overflow error: When the value of a variable is too large for its type, unpredictable
things may occur. For example, on some systems, MAX_INT + 1 == -MAX_INT.
The IEEE standard specifies that if a f1oat or double variable overflows, it be set
to a special pattern indicating infinity. See also underflow error. [p 137]

path: A list of directories along which the computer will search for files. Most
shells have a PATH environment variable along which they search for executable
programs. Similarly, the preprocessor searches for header files (e.g., #include
<stdlib.h>) along the directories in the INCLUDEPATH environment variable,
which can be extended using the -I flag on the compiler command line. The linker
searches for libraries to include using a libpath and its extensions specified via the
-L compiler flag. [p 385]

pipe: A connection that directly redirects the output from one program to the input
of another. In the shell, a pipe is formed by putting a | between two programs; in
C, it is formed using the popen function. [p 395]

pivot table: See crosstab. [p 101]

plot: A graphic with two or three axes and function values marked relative to those
axes. Not to be confused with a graph. [p 158]

pointer: A variable holding the location of a piece of data. [p 53]

POSIX: The Portable Operating System Interface standard. By the mid-1980s, a
multitude of variants on the UNIX operating system appeared; the Institute of Elec-
trical and Electronics Engineers convened a panel to write this standard so that pro-
grams written on one flavor of UNIX could be more easily ported to another flavor.
Santa Cruz Operation’s UNIX, International Business Machines’ AIX, Hewlett-
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Packard’s HP-UX, Linux, Sun’s Solaris, some members of Microsoft’s Windows
family, and others all more or less comply with this standard.

power: The likelihood of rejecting a false null. That is, if there is a significant
effect, what are the odds that the test will detect it? This is one minus the likelihood
of a Type Il error. [p 335]

prime numbers: Prime numbers are what is left when you have taken all the pat-
terns away. (Haddon, 2003, p 12) [p 61]

principal component analysis: A projection of data X onto a basis space con-
sisting of n eigenvalues of X’X, which has a number of desirable properties. [p
265]

probability density function: The total area under a PDF for any given range is
equal to the probability that a draw from the distribution will fall in that range. The
PDF is always nonnegative. E.g., the familiar bell curve of a Normal distribution.
Compare with cumulative density function. [p 236]

probability mass function: The distribution of probabilities that a given discrete
value will be drawn. L.e., a PDF when the distribution is over discrete values. [p
236]

projection matrix: X" = X (X'X)"!X’. X”v equals the projection of v onto
the column space of X. [p 272]

profiler: A program that executes other programs, and determines how much time
is spent in each of the program’s various functions. It can thus be used to find the
bottlenecks in a slow-running program. [p 215]

pseudorandom number generator: A function that produces a deterministic se-
quence of numbers that seem to have no pattern. Initializing the PRNG with a
different seed produces a different streams of numbers. [p 357]

query: Any command to a database. Typically, the command uses the select
keyword to request data from the database, but a query may also be a non-question
command, such as a command to create a new table, drop an index, et cetera. [p
74]

random number generator: See pseudorandom number generator. [p 357]

regular expressions: A string used to describe patterns of text, such as ‘two num-
bers followed by a letter’. [p 403]
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scope: The section of code that is able to refer to a variable. For variables declared
outside of a function, the scope is everything in a file after the declaration; for vari-
ables declared inside a block, the scope is everything after the declaration inside
the block. [p 41]

score: Given a log likelihood function In P(8), its score is the vector of its deriva-
tives: S = (01n P/080). [p 326]

seed: The value with which a pseudorandom number generator is initialized. [p
357]

segfault: An affectionate abbreviation for segmentation fault. [p 43]

segmentation fault: An error wherein the program attempts to access a part of
the computer’s memory that was not allocated to the program. If reading from
unauthorized memory, this is a security hole; if writing to unauthorized memory,
this could destroy data or create system instability. Therefore, the system catches
segfaults and halts the program immediately when they occur. [p 43]

shell: A program whose primary purpose is to facilitate running other programs.
When you log in to most text-driven systems, you are immediately put at the shell’s
input prompt. Most shells include facilities for setting variables and writing scripts.
[p 393]

singular value decomposition: Given an m x n data matrix X (where typically
m >> n), one can find the n eigenvectors associated with the n largest eigenval-
ues.?’ This may be done as the first step in a principal component analysis. SVD
as currently practiced also includes a number of further techniques to transform
the eigenvectors as appropriate. [p 265]

skew: The third central moment, used as an indication of whether a distribution
leans to the left or right of the mean. [p 230]

source code: The human-readable version of a program. It will be converted into
object code for the computer to execute.

stack: Each function runs in its own frame. When a program starts, it begins by
establishing a main frame, and then if main calls another function, that function’s
frame is thought of as being laid on top of the main frame. Similarly for subsequent
functions, so pending frames pile up to form a stack of frames. When the stack is
empty, the program terminates. [p 38]

20This is assuming that X’X has full rank.
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standard deviation: The square root of the variance of a variable, often notated as
o. If the variable is Normally distributed, we usually compare a point’s distance to
the mean against 1o, 20, .. .. For distributions that are not Normal (or at least bell-
shaped), o is of limited descriptive utility. See also standard error and variance.
[p 222]

standard error: An abbreviation for the standard deviation of the error. [p 367]

statistic: A function that takes data as an input, such as the mean of x; the yari-
ance of the error term of a regression of X on y, or the OLS parameter 3 =
(X'X)~tX"y. [p 219]

string: An array of characters. Because the string is an array, it is handled using
pointer-type operations, but there are also functions to print the string like the plain
text it represents. [p 65]

structure: A set of variables that are intended to collectively represent one object,
such as a person (comprising, e.g., a name, height, and weight) or a bird (compris-
ing, e.g., a type and pointers to offspring). [p 31]

Structured Query Language: A standard language for writing database queries.
[p 74]

switches: As with physical machinery, switches are options to affect a program’s
operation. They are usually set on the command line, and are usually marked by a
dash, like -x. [p 208]

trimean: (first quartile + two times the median + third quartile)/4. (Tukey, 1977, p
46) [p 234]

threading: On many modern computers, the processor(s) can execute multiple
chains of commands at once. For example, the data regarding two independent
events could be simultaneously processed by two processors. In such a case, the
single thread of program instructions can be split into multiple threads, which must

be gathered together before the program completes. [p 119]

type: The class of data a variable is intended to represent, such as an integer,
character, or structure (which is an amalgamation of subtypes). [p 27]

type casting: Converting a variable from one type to another. [p 33]
Type I error: Rejecting the null when it is true. [p 335]

Type II error: Accepting the null when it is false. See also power. [p 335]
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unbiased statistic: The expected value of the statistic B equals the true population

A~

value: E(3) = (. [p 220]

unbiased estimator: Let « be a test’s Type [ error, and let 3 be its Type Il error.
A test is unbiased if (1 — ) > « for all values of the parameter. Le., you are less
likely to accept the null when it is false than when it is true. [p 335]

underflow error: Occurs when the value of a variable is smaller than the smallest
number the system can represent. For example, on any current system with finite-
precision arithmetic, 2719990 is simply zero. See also overflow error. [p 137]

UNIX: An operating system developed at Bell Labs. Many call any UNIX-like op-
erating system by this name (often by the plural, Unices), but UNIX properly refers
only to the code written by Bell Labs, which has evolved into code owned by Santa
Cruz Operation. Others are correctly called POSIX-compliant. The name does not
stand for anything, but is a pun on a predecessor operating system, Multics.

variance: The second central moment, usually notated as 0. [p 222]

Weighted Least Squares: A type of GLS method wherein different observations
are given different weights. The weights can be for any reason, such as producing
a representative survey sample, but the method is often used for heteroskedastic
data. [p 277]
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1 (0), 20
T, 136
->(0), 60
<, 395
<(0),20
=(0), 19
==(0), 20
> (0), 20
> filename, 394
>>, 395
#define, 116
#ifndef, see ifndef
#include, see include
% (0), 19
&, 57
&& (C), 20
"~ (caret)
in regex brackets
(negation), 404
out of regex brackets
(head of line), 407
x, 11
I'l(C), 20
0x, 54

Abelson et al. (1985), xi
affine projection, 280, 420

agent-based modeling, 178
Agents
assigning RNGs, 363
Albee (1960), xii
Allison (2002), 105, 346
Amemiya (1981), 287
Amemiya (1994), 310, 336
analysis of variance, 312
and, see &&
animation, 177
anonymous structures, 353
ANOVA, 224,226, 312,
316,419, 420
comparison to OLS, 316
for description, 224-227
for testing, 312-315
ANSI, 419
apop_. ..
F_test, 311, 312
IV,278
anova, 226
array_to_matrix, 125
array_to_vector, 125
beta_from_mean_var,
358
crosstab_to_db,

100-102

data_alloc, 120
data_copy, 122
data_correlation,

229,231
data_fill, 310
data_get..., 110,121
data_listwise_-

delete,

347
data_memcpy, 125
data_print, 99, 100,

126
data_ptr..., 121
data_ptr, 359
data_set..., 121
data_show, 99, 231
data_sort, 233
data_stack, 282
data_summarize, 232
data_to_dummies, 110,

111, 123, 281, 283
data, 104, 120-130, 232
db_merge_table, 102
db_merge, 102
db_rng_init, 84
db_to_crosstab, 81,

100-102
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det_and_inv, 134
dot, 129, 267

draw, 359
estimate_restart,

150, 345
estimate, 150, 257,

273,323
exponential, 374
gamma, 374
histograms_test_-

goodness_of_fit,

323
histogram_model_-

reset,

323
histogram_vector_-

reset,

323
histogram, 323
jackknife_cov, 131
line_to_data, 125, 353
line_to_matrix, 125
linear_constraint,

151
linear_constraint,

152,353

logit, 284

lookup, 252,304

matrix_..._all, 119

matrix_..., 119

matrix_determinant,
134

matrix_inverse, 134
matrix_map_all_sum,
119
matrix_map, 100
matrix_normalize, 274
matrix_pca, 269
matrix_print, 100,
126, 167, 168
matrix_summarize, 231
matrix_to_data, 120,

125
maximum_likelihood,
325, 337-340

merge_dbs, 98
model, 32, 143 ff, 273,
337,339,359
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multinomial_probit,
285
normalize_for_svd,
267
ols, 279
open_db, 98
opts, see apop_opts for
specific options
paired_t_test, 309
plot_histogram, 358
plot_histogram, 172
plot_qq, 320
plot_query, 98,417
query_to_data, 99,
120, 127
query_to_float,99
query_to_matrix, 99,
127
query_to_mixed_data,
104
query_to_text, 93,99,
121
query_to_vector, 99,
127
query, 98, 127
rng_alloc,252, 357
system, 125, 397
t_test, 110
table_exists, 85, 108
test_anova_-
independence,
313
test_fisher_exact,
314
test_kolmogorov, 323
text_to_data, 125
text_to_db, 85, 98,
107, 125, 206, 417
update, 259, 361, 373,
374
vector_..., 119
vector_apply, 119
vector_correlation,
231
vector_distance, 150
vector_exp, 83
vector_grid_-
distance,

INDEX

150
vector_kurtosis, 230,
365
vector_logl0, 117,174
vector_log, 83, 117
vector_map, 119
vector_mean, 231
vector_moving_-
average,
262
vector_percentiles,
233
vector_print, 126
vector_skew, 83, 230,
231
vector_to_data, 120,
125
vector_to_matrix, 125
vector_var, 83, 230,
231
vector_weighted_-
mean,
232
vector_weighted_var,
232
wls, 278
zipf, 149
APOP_COL, 142
APOP_DB_ENGINE, 106
Apop_matrix_row, 114
apop_opts....
db_name_column, 100,
120
db_nan, 108
output_append, 167
output_pipe, 126, 169
output_type, 126
thread_count, 119
APOP_ROW, 142
APOP_SUBMATRIX, 142
apophenia, 1, 420
arbitrary precision, 138
argc, 206
argp, 208
arguments, 36, 420
argv, 206
Arithmetic exception
(core dumped), 135
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arithmetic in C, 19

array, 30, 59, 420

arrays, 125

ASCII, 419

asprintf, 67, 111

assert, 71

assertion, 421

assignment, see =

asymptotic efficiency, 221

atof, 29, 208

atoi, 208

atol, 208

Avriel (2003), 150, 340

awk (POSIX), 403

Axtell (2006), 252

aymptotic unbiasedness,
221

bandwidth, 261, 262, 376,
421
bar chart, 164
Barron & Sheu (1991), 331
bash, 41, 382
bash (POSIX), 187, 382
Baum et al. (2008), 93, 376
Bayes’s rule, 258, 336
Bayesian, 330
Bayesian updating, 144,
258,372
begin (SQL), 84
Benford’s law, 173
Benford (1938), 173
Bernoulli, 327
Bernoulli distribution, 237,
358
gsl_ran_-
bernoulli(_pdf),
237
Bernoulli draw, 237, 260,
421
Beta distribution, 249, 259,
331, 358
gsl_cdf_beta_(P,Q),
249
gsl_ran_beta(_pdf),
249
Beta function, 249
between (SQL), 79

gsl_stats

BFGS algorithm, see
Broyden-Fletcher-
Goldfarb-Shanno
Conjugate gradient
algorithm

bias, 220, 421

binary tree, 200, 421

Binomial distribution, 237,
260, 331, 358

gsl_ran_binomial (_-
pdf),
238

birthday paradox, 23

BLAS, 419

block scope, 41

BLUE, 221,419,421

Bonferroni correction, 319

Boolean expressions, 20

bootstrap, 367, 421

bootstrap principle, 296,
421

Bourne shell, 382

Bowman & Shenton
(1975), 320

bracket expressions

in regexes, 404

BRE, 403, 419

breaking via <ctrl-c>, 61,
363

Broyden—Fletcher—
Goldfarb—Shanno
Conjugate gradient
algorithm, 341

buffer, 169

C keywords
1,20
->,60
<, 20

>, 20

%, 19

&&, 20

char, 29
const, 65
double, 29, 135
do, 23
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else, 21
extern, 51
float, 29, 135
for, 23,118
free, 58
ifndef, 354
if, 21,211
include, 49-50, 385
int, 29
long, 29
static, 39, 147, 153,
357
struct, 31, 60
typedef, 31, 191
union, 121
void, 36
while, 23
[1,20
C shell, 382
C++, 42
call-by-address, 54, 421
call-by-value, 39, 54, 421
calloc, 57
carriage return, 61, 418
case (SQL), 110
Casella & Berger (1990),
221,331,334
cast (SQL), 78
casting, see type casting
cat (POSIX), 399, 400
Cauchy distribution, 303,
365
Cauchy—Schwarz
inequality, 229, 333,
421
causality, 271
cd (POSIX), 399
CDF, 236, 419, see
cumulative density
function
cellular automaton, 178
Central Limit Theorem,
295,297,422
central moments, 230, 422
Chamberlin (1890), 317
char (C), 29
Chebychev’s inequality,
221
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Cheng & Long (2007), 287
x? distribution, 301, 358
gsl_cdf_chisq_P, 305
gsl_cdf_chisq_Pinv,
306
x? test, 309
goodness-of-fit, 321
scaling, 314
chmod (POSIX), 160
choose
gsl_sf_choose, 238
Chung & Fraser (1958),
375
Chwe (2001), 262
Cleveland & McGill
(1985), 180
closed-form expression,
422
CLT, 296, 419
clustering, 289-291
CME, 236, 419, see
cumulative mass
function
Codd (1970), 95
coefficient of
determination, 228
color, 180
column (POSIX), 399, 402
command-line utilities, 98
combinatorial optimization,
338
Command line
arguments on, 203
command-line programs,
see POSIX commands
commenting out, 25
comments
in C, 25-26
in Gnuplot, 160
in SQL, 78
commit (SQL), 84
comparative statics, 152
compilation, 48, 51
compiler, 18, 422
conditional probability, 258
conditionals, 20
configuration files, 383

gsl_stats

conjugate distributions,
374,422

conjugate gradient, 341

Conover (1980), 323, 376

consistent estimator, 221,
422

consistent test, 335, 422

const (C), 65

constrained optimization,
151

contour plot, 162

contrast, 309, 422

Conway, John, 178

Cook’s distance, 131

Cook (1977), 131

correlation coefficient, 229,
422

counting words, 401

covariance, 228, 422

Cox (1962), 354

cp (POSIX), 399

Cramér—Rao Inequality,
335

Cramér—Rao lower bound,
221,229, 333,423

create (SQL), 84

Cropper et al. (1993), 283

crosstab, 101, 423

csh

redirecting stderr, 396

csh (POSIX), 382

cumulative density
function, 236, 423

cumulative mass function,
236,423

current directory attack,
385

cut (POSIX), 399, 401

CVS, see subversion

data
conditioning, 139
format, 75, 147
data mining, 316, 423
data snooping, 316, 423
data structures, 193
de Finetti, 330
debugger, 43, 423
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debugging, 43—47
decile, see quantile
declaration, 423
of functions, 36
of gsl_matrix, 114
of gsl_vector, 114
of pointers, 57
of types, 31
of variables, 28-33
degrees of freedom, 222,
423
delete (SQL), 86
Dempster et al. (1977), 347
dependency, 423
dereferencing, 43
desc (SQL), 83
descriptive statistics, 1, 423
designated initializers, 32,
353
df, 419
diff (POSIX), 399, 402
discards qualifiers from
pointer target type, 201
discrete data, 123
distinct, 80, 81
do (C), 23
dos2unix (POSIX), 418
dot files, 383
dot product, 129
dot, graphing program, 182
double (C), 29, 135
doxygen (POSIX), 185
drop (SQL), 85, 86
dummy variable, 110-111,
123, 281-283, 316, 424

e, 136

ed (POSIX), 403, 404

efficiency, 220, 334, 424

Efron & Hinkley (1978),
13,349

Efron & Tibshirani (1993),
231

egrep (POSIX), 403, 406

eigenvectors, 267

Einstein, Albert, 4

Electric Fence, 214

Eliason (1993), xi
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else (0), 21

EMACS (POSIX), 387, 402,
403

env (POSIX), 381, 382

environment variable, 381,
424

Epstein & Axtell (1996),
178

ERE, 403, 419

erf, 284,419

error function, 284, 424

Euler’s constant, 136

every (Gnuplot), 175

except (SQL), 94

excess variance, 239

exit, 166

expected value, 221, 424

Exponential distribution,
247

gsl_cdf_-
exponential_(P,Q),
247
gsl_ran_-

exponential (_pdf),
247

exponential family, 349

export (POSIX), 382, 424

extern (C), 51

Extreme Value distribution,
284

F distribution, 304, 358
gsl_cdf_fdist_P,305
F test, 309
apop_F_test, 310
factor analysis, 265
fclose, 169
Fein et al. (1988), 254
Feller (1966), 229
Fermat’s polygonal number
theorem, 47
fflush, 61, 169
fgets, 203, 394
Fibonacci sequence, 30
files
hidden, 383
find (POSIX), 386
Fisher exact test, 8, 314

gsl_stats

Fisher, RA, 308

on likelihood, 329
Fisher (1922), 313
Fisher (1934), 329
Fisher (1956), 308
Flat distribution, see

Uniform distribution
flat distribution, 358
Fletcher—Reeves Conjugate
gradient algorithm, 341

float (C), 29, 135
fopen, 167, 394
for (C), 23, 118
FORTRAN, 10
fortune (POSIX), 397
fprintf, 70, 166, 396
frame, 37-39, 54, 424
free (C), 58
Freedman (1983), 316
frequentist, 329
Friedl (2002), 403
Frisch (1995), 385
from (SQL), 77
Fry & Harris (1996), 287
full outer join, 106
function pointers, 190

g_key_file_get..., 205

Game of Life, 178

Gamma distribution, 144,
246, 331

gsl_cdf _gamma_(P,Q),
246
gsl_ran_gamma(_pdf),

246

Gamma function, 244, 246

Gardner (1983), 178

Gaussian distribution, 358,
see Normal distribution

GCC, 48,419, 424

gcc, 18,216

gcc (POSIX), 41,214

gdb, see debugging

gdb (POSIX), 44, 387

GDP, 419

Gelman & Hill (2007), xi,
95, 290, 292

Gelman et al. (1995), 373
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Generalized Least Squares,
277,424
Gentleman & Ihaka (2000),
145
getenv, 384
gets, 394
Gibbard (2003), 295
Gibrat (1931), 252
GIF, 177
Gigerenzer (2004), 308
Gill et al. (1981), 340
Givens & Hoeting (2005),
261
Glaeser et al. (1996), 225
Glib, 65, 193
global information, 325
global variables
initializing, 29, 211
globbing, 407, 424
GLS, 277,419, see
Generalized Least
Squares
GNU, 419
GNU Scientific Library, 7,
113
Gnuplot
comments, 160
gnuplot (POSIX),
157-180, 417
comments, 160
Gnuplot keywords
every, 175
plot, 160
replot, 160, 170
reset, 168
splot, 161
Gnuplot settings
key, 165
out, 159
pm3d, 161, 165
term, 159
title, 164
xlabel, 164
xtics, 165
ylabel, 164
ytics, 165
Goldberg (1991), 139
golden ratio, 30
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Gonick & Smith (1994),
Xiii

Good (1972), 357

goodness of fit, 319

Gough (2003), 113

graph, 182, 424

graphing, see Gnuplot, see
Graphviz

flowcharts, 182
nodes, 182

Graphviz, 182-185

Greene (1990), 256, 271,
281, 286, 315, 346

grep (POSIX), 382, 395,
403, 404-408

grep/egrep (POSIX), 399

grid search, 371, 424

group by, 81,91

GSL, 113, 419, see GNU
Scientific Library

gsl_...
blas_ddot, 130
cdf_...,305

cdf_beta_(P,Q),249
cdf_exponential_-

P,Q),

247
cdf_flat_(P,Q),251
cdf_gamma_(P,Q),246
cdf_gaussian_(P,Q),

241
cdf_lognormal_(P,Q),

243
cdf _negative_-

binomial_(P,Q),

244
linalg HH_solve, 134
linalg SV_decomp, 269
matrix_add_constant,

117
matrix_add, 117
matrix_alloc, 114
matrix_div_elements,

117
matrix_free, 114
matrix_get, 116
matrix_memcpy, 125,

132
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matrix_mul_elements,
117
matrix_ptr, 122, 359
matrix_row, 142
matrix_scale, 117
matrix_set_all, 114
matrix_set_col, 114
matrix_set_row, 114
matrix_set, 116
matrix_sub, 117
matrix_transpose_-

memcpy,
149

matrix, 99, 114, 120,
140

pow_2, 132

pow_int, 132

ran_...,358

ran_bernoulli(_pdf),
237

ran_beta(_pdf),249
ran_binomial (_pdf),

238
ran_exponential(_-

pdf),

247
ran_flat(_pdf),251
ran_gamma (_pdf), 246
ran_gaussian(_pdf),

241
ran_-

hypergeometric(_-

pdf),

239
ran_lognormal (_pdf),

243
ran_max, 363
ran_multinomial(_-

pdf),

240
ran_negative_-

binomial (_pdf),

244
ran_negative_-

binomial,

244
ran_poisson(_pdf),

244

INDEX

rng_env_setup, 357
rng_uniform_int, 297,
361, 369
rng_uniform, 251, 358
rng, 357
sf_beta, 249
sf_choose, 238
sf_gamma, 244
sort_vector_-
largest_index,
268
stats_variance, 230
vector_add_constant,
117
vector_add, 117
vector_div, 117
vector_free, 114
vector_get, 116
vector _memcpy, 125
vector_mul, 117
vector_ptr, 122, 359
vector_scale, 117
vector_set, 116
vector_sort, 233
vector_sub, 117
vector, 119, 120, 140,
142
GSL_IS_EVEN, 19
GSL_IS_0DD, 19
GSL_MAX, 212
GSL_MIN, 212
GSL_NAN, 135
GSL_NEGINF, 135
GSL_POSINF, 135
GUI 419
Guinness Brewery, 303
Gumbel distribution, 283

Haddon (2003), 430

half life, 255

halting via <ctrl-c>, 61,

363

hash table, 193

hat matrix, 272, 424

having (SQL), 82

head (POSIX), 399, 400

header file, 49, 425
aggregation, 50



INDEX

variables in, 50
hedonic pricing model, 283
help
with command-line
switches, see man
within Gnuplot, 163
Hessian, 341, 425
heteroskedasticity, 277, 425
hidden files, 383
hierarchical model, see
multilevel model
Hipp, D Richard, 75
histograms
drawing from, 361-362
plotting, 172
testing with, 321-324
Householder
solver, 134
transformations, 280
How to Lie with Statistics,
181
Huber (2000), 7
Huff & Geis (1954), 181
Hunter & Schmidt (2004),
336
Hybrid method, 342
Hypergeometric
distribution, 239
gsl_ran_hypergeo-
metric(_pdf),
239

IDE, 18,419
identical draws, 326
identically distributed, 425
identity matrix, 425
1IEC, 419
IEC 60559 floating-point
standard, 135
1IEEE, 419
IEEE 754 floating-point
standard, 135
if (0), 21,211
iff, 425
ifndef (C), 354
IIA, 286,419
iid, 326,419, 425
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importance sampling, 371,
425

imputation, maximum
likelihood, 347

in (SQL), 79

include (C), 49-50, 385

include path, 49

incrementing, 20

independence of irrelevant
alternatives, 286, 425

independent draws, 326,
425

index (SQL), 90

indices, 90

internal representation,

200

inferential statistics, 1, 425

INFINITY, 135

infinity, 135

information equality, 332

information matrix, 326,
426

initializers, designated, 32

insert (SQL), 84, 86

instrumental variable, 275,
426

int (C), 29

interaction, 281, 426

Internal Revenue Service
(2007), 117

interpreter, 426

intersect (SQL), 94

invariance principle, 351

isfinite, 135

isinf, 135

isnan, 135

IS0, 420

1V, 275, 420, see
instrumental variables

jackknife, 131, 426
jittering, 175
join, 426
command-line program,
398
database, 87-91
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Kahneman et al. (1982),
222

kernel density estimate,
262,426

Kernighan & Pike (1999),
64,193

Kernighan & Ritchie
(1988), 18, 126, 210

key (Gnuplot), 165

key files, 204

key value, 200

Klemens (2007), 349

Kline (1980), 325

Kmenta (1986), 271, 277,
320, 370

Knuth, Donald, 73

Knuth (1997), 200

Kolmogorov (1933), 323

kurtosis, 230, 365, 426

KTEX, 185

lattices, 171

Laumann & Derick (2006),
14

layers of abstraction, 5

ldexp, 137

leading digit, 173

least squares

see Ordinary Least

Squares 227

left outer join, 106

legend, plot, 165

Lehmann & Stein (1949),
375

leptokurtic, 230, 231, 306

less (POSIX), 399, 400,
403

lexicographic order, 91,
426

libraries, 6

library, 52, 427

Life, Game of, 178

like, 79

likelihood function, 326,
427

philosophical

implications, 329

likelihood ratio, 336 ff
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likelihood ratio test, 151,
335,351,427
limit (SQL), 83
line feed, 61, 418
line numbers, 401
linked list, 198, 427
linker, 51, 427
listwise deletion, 105, 347
LOAD (SQL), 107
local information, 325
log likelihood function, 326
log plots, 174
logl0, 173, 174
logical expressions, 20
logistic model, 283, see
logit model
logit, 144, 283-292, 328
nested, 286, 291
Lognormal distribution
gsl_ran_-
lognormal (_pdf),
243
lognormal distribution, 242
long (C), 29
long double
printf format specifier,
138
love
blindness of, 317
LR, 351,420
1s (POSIX), 399

macro, 212, 427

Maddala (1977), 271, 275

main, 40

make, 427

make (POSIX), 48, 188,
387-391

malloc, 57 ff, 214

MALLOC_CHECK_, 214

man (POSIX), 399, 400

Manhattan metric, 150, 427

MAR, 420

marginal change, 285

Markov Chain Monte
Carlo, 372

math library, 52

math.h, 52
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matrices
determinants, 134
dot product, 129
inversion, 134
views, 128
max, see GSL_MAX
maximum likelihood
tracing the path, 340
maximum likelihood
estimation, 325 ff
MCAR, 420
McFadden (1973), 284
McFadden (1978), 292
MCMC, 420
mean squared error, 220,
223,427
median, 233-234
memcpy, 124
memmove, 124, 198
memory debugger, 214
memory leak, 62, 428
mesokurtic, 231
metadata, 128, 427
in the database, 86
metastudies, 260
method of moments, 256
Metropolis—Hastings, 372
min, see GSL_MIN
missing at random, 346,
428
missing completely at
random, 346, 428
missing data, 104, 105, 345
missing not at random, 346,
428
mkdir (POSIX), 399
ML, 420
MLE, 325, 420, see
maximum likelihood
estimation
MNAR, 420
modulo, see %
moment generating
functions, xii
moments, 229
Monte Carlo method, 356,
428
more (POSIX), 399, 400

INDEX

MSE, 420
multicollinearity, 275, 428
multilevel model, 288 ff
multilevel models, 288
Multinomial distribution,
240
multinomial distribution
gsl_ran_-
multinomial (_pdf),
240
multinomial logit, 284
multiple testing problem,
257,316-319
Multivariate Normal
distribution, 347
multivariate Normal
distribution, 144, 242
mv (POSIX), 399
mySQL, 75, 106
mysqlshow, 107

Nabokov (1962), 1
naming functions, 115
NAN, 104, 135, see not a
number
National Election Studies
(2000), 286
Negative binomial
distribution, 244
gsl_cdf_negative_-
binomial_(P,Q),
244
gsl_ran_negative_-
binomial (_pdf),
244
negative definite, 269
Negative exponential
distribution, 248
negative semidefinite, 269
Nelder—Mead simplex
algorithm, 341
nested logit, 291
network analysis, 147
networks
graphing, 183
Newton’s method, 342
Neyman & Pearson
(1928a), 335
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Neyman & Pearson
(1928b), 335
Neyman—Pearson lemma,
335,350
nl (POSIX), 399, 401
non-ignorable missingness,
346, 428
non-parametric, 428
noncentral moment, 230,
428
Normal distribution, 144,
241, 301, 331
gsl_cdf_gaussian_-
P,Q,
241
gsl_ran_gaussian(_-
pdf),
241
gsl_cdf_gaussian_P,
305
variance of, 370
normality
tests for, 319, 323, 370
not, see !
not a number, 104, 135
null (SQL), 97, 105
null pointer, 43, 428

object, 428

object file, 51, 429

object-oriented
programming, 42, 121

offset, 83

OLS, 270, 420, see
Ordinary Least Squares

optimization, 216

constrained, 150

or, see | |

order by (SQL), 83

order statistic, 250, 429

order statistics, 318

Ordinary Least Squares, 2,
144,264, 274-275,
315,429

decomposing its variance,

227

Orwell (1949), 42

out (Gnuplot), 159
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outer join (SQL), 106
outliers

spotting, 134
overflow error, 137, 429

pairwise deletion, 348
Papadimitriou & Steiglitz
(1998), 338
parameter files, 204
partitioned matrices, 122
paste (POSIX), 399, 401
path, 385, 429
Paulos (1988), 23
Pawitan (2001), xi, 329,
351
PCA, 265, 420
pclose, 396
PCRE, 403, 420
PDF, 236, 420, see
probability density
function
Pearson correlation
coefficient, 229
Pearson (1900), 301
Peek et al. (2002), 398
penalty function, 150
percentile, see quantile
perl (POSIX), 399, 408,
408-418
Perl (2000), 271
permutation test, 375
m, 136
Pierce (1980), 193
pipe, 167, 395, 429
pivot table, 101, 429
platykurtic, 230, 231
plot, 429
plot (Gnuplot), 160
plotting, see Gnuplot
pm3d (Gnuplot), 161, 165
PMF, 236, 420, see
probability mass
function
Poincaré (1913), 264
pointer, 53 ff, 429
declaration, 57
function, 190
null, 43
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Poisson distribution, 144,
245, 246, 331
gsl_ran_poisson(_-
pdf),
244
Polak—Ribiere Conjugate
gradient algorithm, 341
Polhill et al. (2005), 139
Poole & Rosenthal (1985),
265
popen, 167, 394, 396, 429
positive definite, 269
positive semidefinite, 269
POSIX, 381, 429
POSIX commands
EMACS, 387, 402, 403
awk, 403
bash, 187, 382
cat, 399, 400
cd, 399
chmod, 160
column, 399, 402
cp, 399
csh, 382
cut, 399, 401
diff, 399, 402
dos2unix, 418
doxygen, 185
ed, 403, 404
egrep, 403, 406
env, 381, 382
export, 382, 424
find, 386
fortune, 397
gcc, 41,214
gdb, 44, 387
gnuplot, 157-180, 417
grep/egrep, 399
grep, 382, 395, 403,
404-408
head, 399, 400
less, 399, 400, 403
1s,399
make, 48, 188, 387-391
man, 399, 400
mkdir, 399
more, 399, 400
mv, 399
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nl, 399, 401
paste, 399, 401
perl, 399, 408, 408-418
ps2pdf, 160
rmdir, 399
rm, 399
sed, 394, 399, 400, 403,
408-418
setenv, 424
sort, 399, 400
tail, 399, 400
touch, 389
tr, 407
uniq, 399, 402
unix2dos, 418
vim, 402
vi, 387,403
we, 399, 401
posterior distribution, 258
Postscript, 159, 185,
187-188
pow, 23, 132
power, 306, 335, 430
precision, numerical, 136
preprocessor, 49-50, 213
Press et al. (1988), xiii,
340, 341
Price & Stern (1988), 26
prime numbers, 61, 430
principal component
analysis, 265, 275, 430
printf, 28, 137, 138
printing, see printf
prisoner’s dilemma, 194
PRNG, 357, 420
probability density
function, 236, 430
probability mass function,
236, 430
probit, 144, 283-292,
328-329
probit model, 284
profiler, 215, 430
programs, see POSIX
commands
projection matrix, 272, 430
ps2pdf (POSIX), 160

gsl_stats

pseudorandom number
generator, 430
Python, 11, 403

Q-Q plot, 319
quantile, 232, 319
query, 74, 430

R2, 311
Ramsey, 330
rand, 84, 363
random (SQL), 84
random number generator,
430
random numbers, 357-364
from SQL, 84
ranks, 147, 253
realloc, 196
regression, 315
regular expressions, 403 ff,
430
bracket expressions, 404
case sensitivity, 405
white space, 407
replot (Gnuplot), 160,
170
reset (Gnuplot), 168
revision control, see
subversion
right outer join, 106
rint, 33
rm (POSIX), 399
rmdir (POSIX), 399
RNG, 357, 420
round, 81
rounding, 33
rowid, 401
rowid (SQL), 85
Ruby, 11
Rumi (2004), 74

Sarndal et al. (1992), 232
sample code
Makefile.tex, 188
Rtimefisher, 9
agentgrid.gnuplot,
161
amongwithin.c, 225
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argv.c, 207
arrayflock.c, 197
bdayfns.c, 35
bdaystruct.c, 32
bimodality, 378
birds.c, 195
birthday.c,24
callbyadd.c, 56
callbyval.c, 38
candidates.c, 292
cltdemo.c, 298
cooks.c, 133
corrupt.c, 348
databoot.c, 368
drawbeta.c, 359
drawfrompop.c, 361
dummies.c, 282
econlOl.analytic.c,
154
econlOl.c, 153
econl0l.main.c, 155
eigenbox.c, 267
eigeneasy.c, 269
eigenhard.c, 268
env.c, 384
errorbars.c, 173
fisher.c,314
flow.c, 22
fortunate.c, 397
ftest.c, 311
fuzz.c, 140
getopt.c, 209
getstring.c, 204
gkeys.c, 205
glib.config, 205
goodfit.c, 322
jackiteration.c, 132
jitter.c, 175
lattice.c, 171
life.c, 179
listflock.c, 199
localmax.c, 339
lrnonnest.c, 354
lrtest.c, 352
maoi.c, 254
markov.c, 129
metroanova.c, 226
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multiplicationtable.c, segfault, 43,431, see

114
newols.c, 146
normalboot.c, 369
normalgrowth.c, 253
normallr.c, 151
normaltable.c, 252
notanumber.c, 135
oneboot.c, 368
pipeplot.c, 168
plotafunction.c, 191
powersoftwo.c, 138
primes.c, 62
primes2.c, 63
probitlevels.c,293
projection.c, 273
projectiontwo.c,279
qgplot.c, 320
ridership.c, 289
selfexecute.c, 170
simpleshell.c, 40
sinsq.c, 338
smoothing.c, 263
squares.c, 59
statedummies.c, 112
taxes.c, 118
tdistkurtosis.c, 366
time.c, 363
timefisher.c,9
treeflock.c, 201
ttest.c, 111
ttest.long.c, 110
wbtodata.c, 100
sample distributions, 235
Sampling
from an artificial
population, 361
Savage, 330
scanf, 203
Scheffé (1959), 312, 420
scientific notation, 136
scope, 41-42, 430
global, 50
score, 326, 431
sed (POSIX), 394, 399,
400, 403, 408-418
seed, 357, 431

segmentation fault
segmentation fault, 43, 214,
431
select (SQL), 77 ff
setenv, 384
setenv (POSIX), 424
settings
for apop_models, 339
shell, 393, 431
Shepard & Cooper (1992),
265
SIGINT, 61
Silverman (1981), 377
Silverman (1985), 263
simulated annealing, 343,
373
singular value
decomposition, 265,
431
sizeof, 125, 300
skew, 230, 431
Slutsky theorem, 364
Smith & Reynolds (2005),
89
Snedecor & Cochran
(1976), 301
snowflake problem, 4, 270,
288
snprintf, 67
sort (POSIX), 399, 400
sorting
sort_vector_-
largest_index,
268
database output, 83
of gsl_vectorsand
apop_datas, 233
source code, 431
spectral decomposition,
265
splot (Gnuplot), 161
sprintf, 67
SQL, 6, 74, 420
comments, 78
SQL keywords
LOAD, 107
begin, 84
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between, 79

case, 110

cast, 78

commit, 84

create, 84

delete, 86

desc, 83

drop, 85, 86

except, 94

from, 77

having, 82

index, 90

insert, 84, 86

intersect, 94

in, 79

limit, 83

null, 97, 105

order by, 83

outer join, 106

random, 84

rowid, 85

select, 77 ff

union all, 94

union, 94

update, 87

where, 78
SQLite, 75
sqlite_master, 86
sqrt, 23,52
srand, 363
SSE, 227, 311, 420
SSR, 227,311,420
SST, 227, 420
stack, 38, 44,431
Stallman et al. (2002), 44
standard deviation, 222,

431
standard error, 367, 432
static (C), 39, 147, 153,
357

static variables, 39

initializing, 29, 211
statistic, 219, 432
statistics packages

rants regarding, 8—11
stderr, 70, 267, 394, 396
stdin, 394
stdout, 215, 267, 394
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stopping via <ctrl-c>, 61,
363

Stravinsky (1942), 113, 123

strcmp, 68

strcpy, 67

stride, 142

string, 432

strings, 65 ff

glib library, 193

strlen, 66

strncat, 66

strncpy, 66

Stroustrup (1986), 42

struct (C), 31, 60

structural equation
modeling, 271

structure, 432, see struct

anonymous, 353

Structured Query
Language, 74, 432

Student, 231, 303

Student’s ¢ distribution, 230

Student (1927), 231

subjectivist, 330

subqueries, 91

subversion, 214-215

surface plots, 161

SVD, 265, 420

switches, 208, 432

syntax error, 19

system, 125,397

t distribution, 365
t distribution, 302, 358, 365
gsl_cdf_tdist_P,305
gsl_cdf_tdist_Pinv,
306
t test, 109-110, 308-309
apop_paired_t_test,
308
apop_t_test, 308
tail (POSIX), 399, 400
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Taylor expansion, 350

term (Gnuplot), 159

test functions, 72

TeX, 185

Thomson (2001), 7

threading, 119, 432

time, 362

title (Gnuplot), 164

TLA, 420

touch (POSIX), 389

tr (POSIX), 407

Train (2003), 371

transition matrix, 129

transposition, see
gsl_matrix_-
transpose_memcpy

in dot products, 129

tree, see binary tree

trimean, 234, 432

Tukey (1977), 157, 234,
432

type, 27, 432

type casting, 33-34, 432

Type I error, 335, 335, 432

Type Il error, 335, 335, 432

typedef (C), 31, 191

unbiased estimator, 335,
433
unbiased statistic, 220, 432
underflow error, 137, 433
Uniform distribution, 250,
251, 358
gsl_cdf_flat_(P,Q),
251
gsl_ran_flat(_pdf),
251
union (C), 121
union (SQL), 94
union all (SQL), 94
uniq (POSIX), 399, 402
United States of America

INDEX

national debt and deficit,
181
UNIX, 420, 433
unix2dos (POSIX), 418
update (SQL), 87
utility maximization, 152
utils, 193

vacuum, 108
value-at-risk, 306
variance, 222, 228, 433
vi (POSIX), 387, 403
views, 128

vim (POSIX), 402
void (C), 36

void pointers, 199
Vuong (1989), 354

wc (POSIX), 399, 401

Weighted Least Squares,
144,277,433

where (SQL), 78

which, 168

while (C), 23

William S Gosset, 231, 303

Windows, 381

WLS, 277,420

Wolfram (2003), 115

word count, 401

xlabel (Gnuplot), 164
xtics (Gnuplot), 165

ylabel (Gnuplot), 164
ytics (Gnuplot), 165

z distribution, 308

z test, 307

Zipf distribution, 144
Zipf’s law, 252



