
Tea for survey processing: a tutorial

Ben Klemens, Rolando Rodríguez, and David Vernet

May 5, 2015

Raw data is often rife with missing items, logical errors, and sensitive information.
To ignore these issues risks alienating respondents and data users alike, so data mod-
ification is a necessary part of the production of quality survey and census data. Tea
is a statistical library designed to eradicate these errors via a framework that is user-
friendly, effectively handles Census-sized data sets, and processes quickly even with
relatively sophisticated methods.

Some sample use cases

• A record is missing age, so it gets sent to the imputation module to draw values
of age given schooling (if available for the record) and neighborhood character-
istics. Did the imputation generate a married 12-year old? Each draw is sent to
the editing module to verify every consistency check provided by the user, and
strike out failures.

• One record might be for a 110-year old. This is distinctive enough that publish-
ing a table of incomes by age might publicly reveal this person’s income. Tea
provides a module for finding distinctive cases and blanking out the most dis-
tinctive characteristic. Of course, the record then needs to be sent to imputation,
and the imputed value(s) need to be edited.

• Crosstabs giving age × race × income and are cleared for disclosure concerns,
but users want to use statistical techniques based on record-level data, not crosstabs.
Tea’s raking module generates a synthetic data set that is as close as possible to
the constraint of the crosstab (and, of course, meets all constraints).

You can also read this tutorial in your browser at http://b-k.github.io/tea-tutorial/.

• Section 1 presents a ‘hello, world’ example to introduce the basic mechanics of
the system, and the format of the spec file used to describe a survey.

• Section 2 describes Tea’s syntax for generating new variables based on other
variables, like is_heterosexual_marriage calculated from the sex of the
spouses, or log of income calculated from income.

• Section 3 goes into greater detail on the procedure for imputing missing values,
the specific models available, and the use of multiple imputation.

• Section 5 describes editing, the process of finding elements that fail validity
checks.

1

• Section 6 describes a table-based method of finding respondents at risk of being
identifiable, and blanking out portions of their information so an imputed value
can be filled in.

• Section 7 describes Tea’s mechanism for generating synthetic microdata with
marginal values identical to the source data. This is useful for running bootstrap-
style tests and protecting the identities of individual respondents.

• The Appendix in Section 8 provides some other useful information, including
some notes on missingness markers in various systems and a suggestion on how
to cite Tea in your papers.

This tutorial is a work in progress. Tea has an open development model, wherein
users have been able to download versions almost since its inception. We follow the
same process for this tutorial, posting the draft as we write it, and adding more every
week.

Installing Tea The interface for Tea is an R package, but depends on several C li-
braries. That means that installation is not as trivial as typical R packages, but we
found the large-scale processing we had to do to be largely impossible when staying
exclusively within ecosystem of things installable via install.package.

If you are set up to use virtual machines, check out the GovReady Tea machine1.
Installation is easiest on a system with a package management system. Package

managers give you immediate access to thousands of programs, libraries, language
compilers, games, and everything else a computer can do. Linux users know their
package manager; Mac users can use MacPorts2 or Fink3; Windows users can use
Cygwin4.

Once you have the basic platform set up,

• Install the Apophenia library5

• Install the R-to-Apophenia link, Rapophenia6

• Install Tea7

1 System basics
The full specification of the various steps of Tea’s process, from input of data to final
production of output tables, is specified in a single plain text file, herein called the spec
file. An R script executes the plan based on the spec file description.

There are several benefits to such a work flow. First, because the spec file is separate
from programming languages like R or SAS, it is a simpler grammar that is easier to
write, and analysts whose areas of expertise are not in programming can write technical

1https://github.com/GovReady/govready-Tea
2http://macports.org
3http://finkproject.org
4http://cygwin.com
5http://apophenia.info/setup.html
6https://github.com/b-k/Rapophenia
7https://github.com/rodri363/tea

2

specifications without the assistance of a programmer or training in a new programming
language. Second, this follows the programming adage that data and procedure should
be kept separate. Third, we hope that spec files will be published along with data sets,
so that users can see the assumptions made during processing.

Throughout this tutorial, code snippets that have a file name can be found in the
tutorial repository8. In the sidebar on that page, you will find a link to download a zip
file of the full set of files, or users familiar with git can clone the repository.

Being plain text, you can open and edit the files using any text editor (Notepad,
Kate, vi, ...). From that directory, you can cut/paste the R sample code onto the R
command prompt, or run the program using R’s the source command, e.g., from R:

source("hello.R")

This leaves you at the R prompt with the Tea library loaded and any variables
defined in hello.R ready for your interrogation.

If you want to run a script and exit, you can do this via R’s -f flag. From the
command line:

R −f hello.R

Hello Our first example will load in a data set (the Public Use Micro Sample for
the American Community Survey, DC, 2008) and do some simple queries, without yet
doing any editing or imputation. Here is the spec file:

database: test.db

input {
input file: dc_pums_08.csv
output table: dc
overwrite: yes

}

fields {
age: real
schl: int 1−24

}

Almost everything in the spec file will consist of key:value pairs, which may be
organized into groups (and subgroups).

Everything on a line after a # is a comment that the spec parser will ignore. Blank
lines are also ignored.

8https://github.com/b-k/tea-tutorial.git

3

The first non-comment, non-blank line of every spec file needs to specify a database;
more on this requirement in Section 1.1. This will be a file generated on disk (or
opened, if it already exists), using the SQLite database library. The name doesn’t have
to end in .db, but we recommend sticking to that custom. If you are an SQLite expert,
you can view or modify this database using your favorite SQLite tools.

If your data is already in an SQLite database, then you can skip the input step, but
in typical cases your data will be in a plain text file. These are typically called CSV
files (for comma-separated values), though the delimiter can be set to almost anything;
we prefer pipes, | .

The input segment of the spec gives the name of the input file, and the name of
the table that will be generated from that input.

This spec file tells Tea to overwrite the dc table if it already exists. This can be
useful for running an analysis from start to finish, but in most cases, the read-in is time-
consuming and most later operations will not modify the source data, so the default if
the input segment has no overwrite key is to assume overwrite: no. More on this
below.

The spec also includes a section describing two of the fields: age is a real number,
and schl is an integer from 1 to 24. Not all fields have to be specified, but it helps to
guarantee that SQLite doesn’t treat the entries as text, and will be required when we
get to editing. You can have one fields section for every table, or several which will
be treated as a single unit.

Spacing in the spec file is largely irrelevant, but each key:value pair must end with
a newline (or the } closing a group, though we think having the } on its own line looks
better). You will see some examples below where the expression is too long for one
line, so lines are joined by ending the first line with a backslash.

Now that we have specified the characteristics of the survey, we can move on to
hello.R, which makes use of that description:

library(tea)
readSpec("hello.spec")
doInput()

tt <− teaTable("dc", limit=20, cols=c("serialno", "agep", "schl"))
print(tt)

print(summary(teaTable("dc", cols=c("agep", "schl"))))

• The first line, library(tea) loads Tea. All functions defined therein can now
be used at the R command line.

• The second line reads the spec file, "hello.spec".
• At this point, the database is open, and Tea knows about all of the configuration

options in the spec file. Thus, the doInput() function does not need input
arguments specifying the name of the text file or other details—that can all be
read off from the spec.

4

• After doInput() runs, the requested table, dc, exists in the database. The
teaTable() function pulls data from the database into an R data frame. In
the example here, the first use of teaTable will print to the screen, so limit the
number of columns to pull to 20, and request only three columns.

• The second example uses R’s summary() function to show the means and medi-
ans of the age and schooling categories.

We do not print the unremarkable output from running hello.R, but you are en-
couraged to make sure that your Tea installation is working by running it yourself.

1.1 Subkeys
Why does the first line of the spec file have to be a database? Because the first step in
processing is to convert the spec file into a database table. The table is named keys,
and you can view it like any other:

teaTable("keys")

key tag count value
1 database 0 tag 1 test.db
2 input/input file 1 tag 2 dc_pums_08.csv
3 input/output table 1 tag 3 dc

The format of the keys table is subject to change, so please do not rely on it for
processing. However, it can be useful to check that the parser did what you expected.
The fields and checks sections do not get encoded into this table, but every other
key:value pair will get one row. Comparing this table to hello.spec shows how
the keys embedded in a group are written via a group/key notation. For example,
input/input file appeared in the spec as

input {
input file: ...

}

That said, here is an alphabetical list of all Tea keys9.

2 Recodes
A recode is a variable that is deterministically generated from another variable. The
name comes from variables made via simple code switches, like taking three-digit race
codes (100, 101, ..., 200, 201, ...) and reducing them to one-digit race codes (1, 2, ...).
But they are a versatile solution to many little survey annoyances. If you find yourself
referring to a complex expression several times, it might be best to define a variable

9http://rodri363.github.io/tea/keys.html

5

based on that expression. It is easy to use a recode to define sets of observations that
can then be treated as separate categories for imputation modeling.

There may be characteristics of the group, such as the householder’s income and
the total income for all members of the household, that are useful for processing each
record. Tea handles such characteristics by adding a field giving the group-based value
to each record.

On the back-end, the recodes are generated via an SQL table view. We have a table
named dc, so the recodes will be in a table named viewdc. Therefore, all recodes are
simple fragments of SQL.

Here is a sample spec file that generates several recodes.

database: test.db
id: id

input {
input file: dc_pums_08.csv
output table: dc

}

fields {
agep: real
PINCP: real
log_in: real
schl: int 1−24
has_income: int 0, 1

}

recodes {
id: serialno∗100 + sporder
log_in: log10(PINCP+10)

}

group recodes {
group id: serialno
hh_in: max(case sporder when 1 then log_in else 0 end)
house_in: sum(case when PINCP is not null \

and PINCP > 0 then PINCP else 0 end)
}

recodes {
log_house_in: log10(house_in)

has_income {
0 | PINCP==0
1 | PINCP>0

}

age_cat {

6

0 | AGEP <= 15
1 | AGEP between 16 and 29
2 | AGEP between 30 and 64
3 | AGEP>= 65
X |

}
}

checks {
has_income=0 and PINCP is null => PINCP=0

PINCP +0.0 < 0
}

• For imputation, we will need a column with a unique identifier, so Tea can record
which imputed value goes with which record. Census household data usually
gives a household number (here, serialno) and a household member number
(here, sporder), so generate a unique ID by joining the two together.

• Income in US dollars is given by the PINCP variable. Because it is often easier
to work with log of income, generate a variable with log of income. The +10
prevents log-of-zero errors.

• The next recode segment works in groups. Each value of the given group id
is treated as a unit, and the given value is written down for every member of the
group. So after the recode step, every observation will have a hh_in field giving
the householder’s income and a house_in field giving the total income for the
household.

• Calculate the householder income by taking the maximum over PINC for the
householder (i.e., the person for whom sporder==1) and zero for everybody
else. We use this form often to pull the characteristics of one household member.

• If you think the SQL syntax for case statements10 is awkward, we agree with
you. Watch out whether there is a variable name after the case keyword [case
pinc when ...] or not [case when ...].

• A recode segment can not refer to fields generated in that recode segment. How-
ever, subsequent recode segments can refer to variables generated in previous
segments.

• Because SQL case statements are difficult to write, but recodes with an if-then
format are so common, Tea provides a special syntax. The has_income variable
will be zero if PINCP is zero, and will be one in all other cases. The age_cat
recode behaves similarly: if AGEP <=15, then age_cat is set to zero, and so on.
The between keyword is standard SQL, and is inclusive of the endpoints of the
range. The default of X will be assigned for any negative or NaN values.

• The spec could also have several group recode segments. For example, one
segment could give state averages and one could give county averages.

The R script uses some of those recodes.
10http://stackoverflow.com/questions/4622/sql-case-statement-syntax

7

library(tea)
readSpec("recode.spec")
doInput()

tt <− teaTable("viewdc", limit=20, cols=c("id", "PINCP", "log_in",
"hh_in", "house_in"))

print(tt)

print(summary(teaTable(teaenv$active_tab, cols=c("log_in", "log_house_in"),
where="log_in+log_house_in > −100")))

print(dbGetQuery(teaenv$con, "select avg(log_house_in) from \
(select distinct serialno, log_house_in \
from viewdc where log_house_in > −100)"))

• The doInput function does the recodes, so there is no need for a separate
doRecodes function.

• We can treat the new fields exactly like we do the ones supplied in the input data.
• Tea keeps a few variables in an R environment named teaenv. The name of

the table after the last step is stored in teaenv$active_tab. If there were no
recodes, this would be dc; because there were recodes, this is viewdc. More on
tracking the flow of tables below.

• The script gets the average log income and average log_house_in, taking care
to add a condition to only get those records where that sum is not -Inf. But the
average of log_house_in is an unusual statistic, because it goes per capita: a
household of seven counts seven times as much as a household of one.

• The last line of the script gets an average using one value per household. It
uses the dbGetQuery function from the RSQLite library to directly query the
database. The function needs a database connection to talk to, and that too is in
the teaenv environment, stored as teanev$con.

The flow of inputs and outputs With a few exceptions, every segment can have
input table, overwrite, and output table keys. Keeping track of these things
will become important as more segments are added and if multiple tables are being
used.

If these keys are not given, the output table from the previous segment of the spec
will be used as the input table for the next segment.

If you do not specify the output from the recodes, then the output table name at
the end of a sequence of recodes is the input table name with view at the front. E.g.,
intab→ viewintab.

The imputation uses filled as the default output table name, but you are encour-
aged to use something else.

8

The flow is thus typically a chain of steps, like input→ recode→ join with another
table → impute. If you give an instruction to overwrite input every time, then the
recode, join, and impute steps will also rebuild their output tables. If you remove the
input table (SQL: "drop table read_in_data") then the table will be re-read and
all subsequent steps rerun. The exceptions: checks and fields apply to all tables, the
input segment takes an input file, and the imputations are always re-run.

As above, the R variable teaenv$active_tab keeps track of the latest output
table.

3 Imputation
This section will begin with an overview of the many methods one could use to fill in
a blank in a survey, and will then show how Tea implements them.

The first are what we will call mechanical edits, which are deterministic if-then
rules. For example, if a birth date is given but an age is not, then fill in the age by
calculating the time span between the birth date and the survey.

Mechanical edits Mechanical methods are best when there is a single correct an-
swer that can be calculated from available information, such as in an accounting ledger
where certain sets of numbers must add up to certain sums.

Here is a simple case from the example below:

has_income=0 and PINC is null => PINC=0

This reads as an if-then statement: if has_income=0 and PINC is null, then
set PINC=0.

People at extreme ends of a range, such as the exceptionally long-lived or the ex-
ceptionally high-income, are a disclosure avoidance risk, so statistical agencies often
top code, changing all values above a threshold to the threshold itself. To set the income
of all people making over a million a year to exactly a million:

PINC>1e6 => PINC=1e6

Some history and literature: Pierzchala [1990] gives an overview of the problem of
editing (including a useful glossary). The models covered in that paper are uniformly
in the class of mechanical edits, including several implementations of the method of
Fellegi and Holt [1976] and deterministic nearest-neighbor methods, such as that used
by Garcia [2003].

This thread has continued into the present day. Chen et al. [2002] discusses three
newer systems, each of which focuses on determining the cause of the error and imput-
ing accordingly: the editing system for the American Community Survey (ACS, from
the US Census Bureau) consists of a long sequence of if-then rules that specify what
substitutions are to be made given every type of failure; the DISCRETE system [Win-
kler, 1995] uses Fellegi-Holt’s method to derive imputation rules from the edits; what is

9

now CANCEIS [Bankier et al., 2002] uses a relatively sophisticated nearest-neighbor
rule for imputation.

Probabilistic edits Probabilistic edits assert some underlying distribution or model
to the variables, and fill in a missing value by making a draw (sometimes multiple)
from the underlying distribution.

The incumbent method is Hot Deck, a nonparametric method in which nearby non-
missing values are used to generate imputed data [Cresce et al., 2005]. In its simplest
form, Hot Deck imputation for a missing value consists of substituting a neighbor’s
value for the missing value. This is a mechanical imputation: if the value is missing,
then fill in using the neighbor’s value.

Randomized Hot Deck is probabilistic: select a subset of similar respondents (see
below), and assume that the missing value takes on the same distribution as the values
in the respondent set. Having established this empirical distribution of values, make a
draw (or draws) to fill in the missing value.

Hot Deck does not make assumptions about mathematical relations among vari-
ables. For example, there is no need to evaluate and substantiate claims that variables
are multivariate Normal, or there is a linear relationship between some set of depen-
dent variables and independent variables. But Hot Deck does make the basic modeling
assumption that neighbors are similar, and that values observed in the neighborhood
are the most likely values that would have been observed had the missing data been
gathered.

Other models make other assumptions. We may assume that income has a Lognor-
mal distribution, in which case we can calibrate the distribution by calculating µ and σ
using the known values from the respondent set, and then drawing from the estimated
Lognormal distribution.

The EM algorithm described below builds and draws from a multivariate empirical
distribution, akin to the univariate Hot Deck distribution.

Categories There is a broad intuition that imputed values should be taken from
records ‘close’ to the one missing information, perhaps in the physical sense, or in a
broader sense, like how we expect an apartment dweller to be more like another apart-
ment dweller than a similar person living in a single-family house, ceteris paribus.

Tea thus provides a mechanism to do imputations by categories. Given this part in
the impute segment of a spec file,

categories {
income_cat
sex
puma #public use microdata area

}

and a record with a known income_cat, sex, and puma, only records with the
same characteristics will be used to train or fit the model.

These categories ‘roll up’ if there is insufficient data. If there are not enough ob-
servations in the income_cat × sex × puma category to build a model, then the

10

last categorization in the list is thrown out, and the model fit using income_cat ×
sex. The roll-up could continue until there are no categories left, in which case the
entire data set is used. Set the minimum group size before a roll-up occurs via an
impute/min group size key.

Imputing incomes The following example imputes missing incomes using two meth-
ods.

Here is the spec file, with several imputation methods:

include: recode.spec

impute {
input table: viewdc
vars: has_income
categories {

age_cat
sex
puma #public use microdata area

}
method: hot deck
output table: has_in

}

common {
input table: viewdc
earlier output table: has_in
min group size: 5
subset: agep+0.0>15

categories {
has_income
age_cat
sex
puma

}
}

impute {
vars: PINCP
paste in: common
method: hot deck
output table: hd

}

impute {
vars: PINCP
paste in: common
method: lognormal

11

output table: norm
}

The spec uses two features to reduce redundancy.

• At the top of the file, the include line tells the parser to paste the full contents
of the listed file into the current file at this point. We can thus reuse all of the
declarations and consistency checks listed in recode.spec above.

• The paste in lines do a similar thing, but for groups. In this case, paste in:
common instructs the parser to find the group defined to that point with the name
common and insert all key/value pairs defined in that group at this point. This
makes it easy to write two imputations that have most of their specification in
common.

Please note: this is a tutorial consisting of simple demo code, so we make no
promises that this is a good model for imputing missing data. We do not know of any
Census surveys that use these models for income imputation. But we do believe that
the spec format makes the assumptions underlying the imputation clear, and provides
an easy means of quickly trying different models.

After every value is imputed, the edits are checked. Above, you saw that recodes.spec
has an edit specifying that if has_income=0 and PINC is null then set PINC to
zero. This guarantees us that at the end of the imputation of has_income, the only
people with incomes marked as missing are those who are imputed as having a nonzero
income.

Check out any time you like Tea is intended for multiple imputation, either in the
formal sense (see, e.g., Schafer [1997]) or in the sense of this example, where multiple
models are used on the same data set.

To facilitate this, imputations are not written to the input table specified in the
impute section, but to a separate output table. For the has_income variable, the
output table was has_in, so after the imputation, we can have a look at that table:

teaTable("has_in", limit=5)

draw value id field
1 0 1 348902 has_income
2 0 0 6462602 PINCP
3 0 0 6462602 has_income
4 0 0 18435903 PINCP
5 0 0 18435903 has_income

Each id/field coordinate in the original table that has an imputed value will have a
row (or rows) in the fill-in table. Here only one draw was made per imputed value, so
the draw column is all zeros; if you specify draw count to be greater than one, then
this will take appropriate values.

12

This is the output for the imputation of has_income, but because the edit rules
specify that (has_income=0 and PINCP is NULL) is an inconsistent value, the fill-
in table also specifies cases where PINCP has to be adjusted to maintain consistency.

The list of imputations is sometimes useful for debugging, but we actually want the
complete data set. Check out an imputation into a new database table as needed:

checkOutImpute(teaenv$active_tab, "complete_tab", filltab="has_in")
outdata <− teaTable("complete_tab")

One imputation often follows another. Here, the model of income depends on the
has_income variable, so we have to impute has_income first. Imputations are done
in the sequence listed in the spec file. Use the earlier output table key in an
impute group to specify a table of fill-ins to be checked out before embarking on the
imputation described by this group.

If you want to not bother with a fill-in table and write imputations directly to the
input table, add the autofill key to an imputation.

R code for imputing income Here is some R code to

• Blank out some incomes, adjusting and saving the data before doing so.
• Do the several imputations as per the spec file above, via doMImpute.
• Check out the imputations in sequence, bind them together, and plot the several

log income distributions on one plot.

The sample data used in this tutorial is already-cleaned public use data, so the only
missing incomes are for people under 15 (who all have missing income, which tells us
that the ACS probably has an edit akin to age<=15 => PINCP=NULL). The pokeHoles
function first records the original distribution as reported by the Census (in the precut
table), then blanks out the incomes of about 30
of already-blank under-15s). Because pokeHoles.R is not really about Tea, we do not
print it here, but you can inspect it on the pokeHoles.R page11 of the repository.

This tutorial will not go into detail regarding the especially R-heavy portions of the
code, such as how the ggplot2 package was used to generate the final plot, though the
comments give a sketch of what the code is doing.

library(tea)
readSpec("incomes.spec")
doInput()

#To prevent a million log(0) errors, give everybody $10
dbGetQuery(teaenv$con, "update viewdc set pincp=pincp+10")

Dirty up the data by blanking out 30% of incomes

11https://github.com/b-k/tea-tutorial/blob/master/pokeHoles.R

13

source("pokeHoles.R")
pokeHoles("viewdc", "pincp", .3)

doMImpute()

A function to use checkOutImpute to get imputed PINCPs and save them
in a format amenable to the plotting routine
getOne <−function(method, fillins){

filledtab <− paste(fillins, "fill", sep="")
checkOutImpute(origin="viewdc", dest=filledtab, filltab=fillins,

subset="agep+0>15")
outframe <−teaTable(filledtab, cols="PINCP")
outframe$PINCP <− log10(outframe$PINCP+10)
outframe$imp <− paste("via", method)
return(outframe)

}

The data sets in this function are two−column: the first
is the observed value, and the second is the name of the method.
Put the two imputations and the original data in that format,
then send to ggplot.
plotWage <− function(outname){

dfhd <− getOne("Hot Deck", "hd")
dfnorm <− getOne("Lognormal", "norm")

dfdc <−teaTable("precut", cols="PINCP", where="PINCP is not null")
dfdc$PINCP <− log10(dfdc$PINCP+10) #+ runif(length(dfdc$PINCP))
dfdc$imp <− "original"

DFall <−rbind(dfdc, dfhd, dfnorm)

#plot DFall, using imp# as color
library(ggplot2)
p <− ggplot(DFall,aes(x=PINCP,color=as.factor(imp)))
p <− p + geom_density()
p <− p + theme(axis.text.x=element_text(angle=45,hjust=1,vjust=1))
bitmap(file=paste(outname,".png", sep=""),width=11∗(10/11),height=8.5∗(10/11),units

="in",res=150)
print(p)
dev.off()

}

plotWage("log_wageplots")

Figure 1 presents the final graphic. The data used for imputation is not pictured, but
hot deck makes draws from that distribution, so the hot deck curve could be read as the
post-cut data set. The imputation using a lognormal distribution produces a distribution
that is lower at the peak and smooths out some of the inflection points in the data.

14

If we believe that people at extremes of the income spectrum are underrepresented
in the complete data, then the fact that Hot Deck simply replicates the nonmissing data
may not be desirable.

Figure 1: Log wages from the data and imputed using Hot Deck and a Normal distri-
bution.

4 Imputation with auxiliary data
Consider two data sets that ostensibly measure the same thing, such as American Com-
munity Survey income questions and income questions on tax returns. The biases and
assumptions underlying both questions are slightly different. People have a strong
incentive to understate taxable income, or might treat exceptional circumstances dif-
ferently between the two. But we have a strong expectation that the two are closely
correlated.

We can expect that for some respondents, we have both observations, for some only
one or the other, and for some we have neither.

Tea has an implementation of the expectation-maximization algorithm by Hartley
[1958], popularized in ?. The end result in our two-income example is a table with

15

ACS incomes on the rows and IRS incomes on the columns. We expect that most
observations will be along the main diagonal where ACS income equals IRS income.

Given a person with a known IRS income, we can impute their ACS income by
taking the appropriate column and making a random draw from the density in that
column. For somebody with no income data, we can make a draw from the entire
table.

This method has several advantages over substituting in IRS observations. It ac-
commodates the uncertainty of using an auxiliary data source, and several draws from
the IRS data would produce a spread of income values (see the discussion of multiple
imputation below). This algorithm becomes especially useful when we go past two
dimensions into six or seven, each of which is partially specified.

The primary benefit of Hartley’s EM algorithm is that it uses all available infor-
mation, in a Bayesianly-correct manner, to generate the final table. If a respondent
has only ACS or only IRS data, their response is still used to generate the densities
in the final table. Tea’s implementation offers a few minor benefits: it accommodates
near-misses (and so is usable for near-continuous variables like incomes) and is imple-
mented efficiently enough to work for up to about seven-dimensional tables (though it
starts to freeze up past that point, especially when many-valued variables like age or
income are involved).

An example In the code repository, there is a second data set, named fake_in.csv.
This is indeed fake data, generated via fake_in.c (also in the repository), which reads
the first 2,000 income observations from the DC PUMS, and multiplies each by a draw
from a truncated Normal(0.9, 0.2) distribution. Thus, the fake income data systemati-
cally under-reports the actual data.

Our first task in processing is to merge the data sets into one table. Joining data
sets is one of the great strengths of SQL databases, and we only have to specify how it
is done using a join segment in the spec file.

database: test.db
id: id

input {
input file: dc_pums_08.csv
output table: dc

}

fields {
agep: real
PINCP: real
income: real
log_in: real
schl: int 0−24
has_income: int 0, 1
id: real
age_cat: cat 0−3, X

16

}

checks {
pincp < 0

}

recodes {
id: serialno∗100 + sporder
log_in: log10(PINCP+10)

}

recodes {
has_income {

0 | PINCP==0
1 | PINCP>0

}

age_cat {
0 | AGEP <= 15
1 | AGEP between 16 and 29
2 | AGEP between 30 and 64
3 | AGEP>= 65
X |

}
}

checks {
has_income=0 and PINCP is null => PINCP=0

PINCP +0.0 < 0
}

input {
input file: fake_in.csv
output table: fake_incomes

}

join {
host: viewdc
add: fake_incomes
output table: dc_united

}

impute {
input table: dc_united
method: em
vars: income, PINCP, age_cat
output table: via_em
subset: agep>15
near misses: ok

17

}

impute {
categories {

age_cat
}
input table: dc_united
method: hot deck
vars: PINCP
subset: agep>15
output table: via_hot_deck

}

Here is the R code. The library and readSpec are by now familiar to you,
but the script then introduces a new command, doTable. Because tea derived the
pipeline of input/output tables from your spec file, it knows what steps to take to
generate any given table. Inspecting the spec ourselves, we see that dc_united de-
pends on viewdc, which is the product of recodes on dc, which is a read-in from the
dc_pums_08.csv file, and on fake_incomes, which is a read-in from fake_in.csv.
The doTable("dc_united") function will therefore implement all of those steps.

As above, the public-use microdata is complete, so we need to use the pokeHoles
function to produce some missing data. The script then calls doMImpute.

library(tea)
readSpec("joined.spec")
doTable("dc_united")

source("pokeHoles.R")
pokeHoles("dc_united", "pincp", .3)

doMImpute()

Check out an imputation using the chosen method
Query the absolute difference between the correct PINCP and the imputed
Get log(diff+10), where the +10 deals with zeros
Print a summary of the log differences.
getDiffs <− function(method, name){

filltab <− paste("via_", method, sep="")
outtab <− paste("complete_", filltab, sep="")
checkOutImpute(origin="dc_united", dest=outtab, filltab=filltab)
diffs <− dbGetQuery(teaenv$con, paste("select abs(dcu.pincp − imp.pincp) \

from precut dcu, ", outtab, "imp\
where dcu.id+0.0 = imp.id \
and dcu.agep>15 \
and dcu.id in (select id from dc_united where pincp is null)"))

diffs <− log(diffs+10)
print(paste("MSEs for income imputed via", name))

18

print(summary(diffs))
}

getDiffs("em", "EM algorithm (w/aux data)")
getDiffs("hot_deck", "Hot deck")

Here is the output. Note that, even though the fake data is biased, generated via a
process that understates income by 90% of the true values, using it as a covariate gave
us better results than not using it.

[1] "MSEs for income imputed via EM algorithm (w/aux data)"
abs(dcu.pincp − imp.pincp)
Min. : 2.303
1st Qu.: 7.251
Median : 8.701
Mean : 8.197
3rd Qu.: 9.799
Max. :13.715

[1] "MSEs for income imputed via Hot deck"
abs(dcu.pincp − imp.pincp)
Min. : 2.303
1st Qu.: 9.623
Median :10.483
Mean :10.166
3rd Qu.:11.296
Max. :13.635

5 Editing
To this point, we have covered imputation of missing values, where those values and
edit-associated values get checked. This segment will cover editing the data that is
already part of the data set. There are three things that can be done when an edit is hit:

• Keep a tally of which fields in which records failed how many edits. If you only
want to get a count of how many fields fail in how many records, try the CheckDF
function.

• Mechanical edit: make a deterministic change you specify given that the edit was
triggered.

• Blank it: use a heuristic specified below to blank out a field, so you can impute
it in a subsequent call to doMImpute().

The sample spec for this part of the tutorial will focus on age, income, and school-
ing, and the presumption that children do not have advanced degrees or significant
incomes.

19

database: test.db
id: id

input {
input file: dc_pums_08.csv
output table: dc

}

fields {
agep: real
PINCP: real
schl: int 0−24

}

recodes {
id: serialno∗100 + sporder

}

checks {
agep < 13 and pincp > 0
schl>12 and agep <=14 and agep>=5 => schl = agep−5

#13 is unlucky.
schl=13 => schl=NULL

}

edit {
input table: viewdc
output table: ed_imp

}

impute {
input table: viewdc
method: normal
categories {

agep
}
subset: agep>=5
vars: sex
previous output table: ed_imp
output table: imp

}

The checks section looks much like the sections above. One edit, that if age is
less than twelve and income is positive, has no associated mechanical edit, because we
do not know whether a fault is in the age or the income field. The other edit has an
associated mechanical edit, that if years of schooling look off, we should assign the

20

U.S.-typical age minus five to schooling. As with most deterministic edits, this comes
off as a somewhat strong assumption.

Any time a record needs to be verified, including during edits, these checks will
run.

This spec file also has an edit segment, which allows you to describe similar
logistics to the impute segment, like the input table (which is assumed to be the output
from the last segment of the spec), the output table, and whether to overwrite.

That segment gets used when you call doEdit() from R. Here is a sample program.

library(tea)
readSpec("edit.spec")

Because the data are already clean, let’s insert some errors to edit.
dbGetQuery(teaenv$con, "update viewdc \

set pincp=1000 where agep = 12")
dbGetQuery(teaenv$con, "update viewdc \

set schl=22 where agep between 10 and 14 and id%2 == 0")

doEdit()

checkOutImpute("viewdc", "vv", filltab="ed_imp")
teaTable("vv", cols=c("agep", "schl"), where="agep<15 and schl>19")

doMImpute()

The ACS PUMS is already edited, so the first order of business is to insert errors,
which is what the two update queries do toward the head of the file.

The doEdit call will fist handle the mechanical edits. When a record hits a failure
with a mechanical edit:

• The change made by the edit is recorded in the output table.
• For the purposes of this record, this modification is exhausted. The edit (here,

that schl>12 and agep<14 is an error) wil still be checked.
• The whole check starts over, with the newly modified record.

The record may encounter additional mechanical edits, or it may get to the end of
the edit list with no further changes. An exhausted mechanical edit will not be reapplied
to a record, so we are guaranteed forward progress.

But there may still be edit failures. In this case, the next step that doEdit() will
take is to blank out fields, with the intent of allowing you to impute them later.

The blanking procedure At this point in the process, we have checked every edit,
and have a tally of every edit that failed for a given record, and know which fields are
associated with the edit.

We would like to blank out the value that is implicated in the most edits. Say that
an edit regarding age and housing tenure failed. If age appears in a hundred edits and

21

fails in six, while tenure appears in three edits but fails all three, we are inclined to
believe that it is tenure (and perhaps some other variable in other age-related edits) that
needs fixing. So we use a modified percentage of edits failed to determine which field
to blank.

The modifier is a user-specified salience, which you may set in the fields seg-
ment:

fields {
age: [1.5] real
status: [2] cat married, single, divorced
tenure: cat own, rent

}

Here, tenure has the default salience of one, and age has a salience of 1.5. In the
example above, the score for age is now 1.5 * 6/100 = .09. The corresponding score
for tenure is thus 1*3/3 = 1, so tenure is still going to be blanked if there is a failing
edit regarding tenure and age.

After tenure is blanked, all later edits regarding tenure are considered resolved for
this record.

The follow-up imputation and the audit trail At the end of the doEdit() step, we
have a fill-in table named edits, which is identical to the output from the imputation
steps above, except that it may include some NULLs, indicating that a certain field in a
certain record is to be blanked out.

We could use checkOutImpute to fold the list of changes into a new table and
check that the edits have been made.

Or, we can use the previous output table key in the imputation to have the
imputation automatically pull the edits for us.

In this setup, the edits and imputations have all been written to the same table, thus
producing a complete audit trail. We can query for every entry with a given record ID
to see what happened to the record over the course of things:

teaTable("ed_imp", where= "id=72023405")

6 Disclosure avoidance

7 Synthetic data
Raking is a method of producing a table of cells consistent with a given list of margins.
For example, we may require that any data set we produce have an age × race ×
ethnicity distribution and a sex × age distribution that exactly matches the complete
data in a census.

Raking is a simple method by which the values in the survey table can be incremen-
tally reweighted to match the values in the census. Let close indicate Kullback-Leibler

22

divergence; then the raked table is the closest table to the original data subject to the
constraints of the row and column totals specified by the census.

Given more dimensions, we may want certain sets of dimensions to match a refer-
ence, such as requiring all block × sex categories to fit to the reference values.

But consider the case where there was no survey; we can begin with a ‘noninfor-
mative’ table in which all cells are filled with ones, and rake that to the closest table
that matches the specified margins.

Raking a noninformative table as per the above definition (or many others) to mar-
gins deemed to not be a disclosure risk will produce microdata that also bears no dis-
closure risk, and can be presented to the public.

Tea’s raking algorithm is designed to work well with sparse tables, and makes
heavy use of the database for its work. If the marginal cells imply a large number
of zeros (which is a near-certainty in high-dimensional tables), those cells will remain
zero in the raked table.

8 Appendix: additional info
Here are some additional notes about using Tea and its attendant tools.

8.1 Ways of expressing missing data
Because Tea is about dealing with missing data, it may be worth getting to know how
various systems express missingness.

• SQL has a NULL marker.
• The IEEE floating-point standard has a not-a-number (NaN) marker (in fact,

billions of NaN markers).
• R has an NA marker distinct from its NaN marker.

These are explicit markers of missingess that can not be mistaken for erroneous
values. It is easy to find systems that use ad hoc markers to represent missingness, in-
cluding zero, -1, an empty string, and so on, especially in older systems that predate the
IEEE standard (first published in 1985). We recommend using the input/missing marker
key to specify this ad hoc value; Tea will then read elements intended as blanks into
the database as NULL.

The IEEE 754 standard specifies a NaN marker to represent math errors such as
0./0., and this is often used to represent missing data.12

Comparison to NaN always fails—the standard specifies that even a==a is false if a
is NaN. Therefore, there are functions to use to check for missingness. in SQL,

a is null
or
a is not null

12The standard also states that 1./0. produces INFINITY and -1./0. produces -INFINITY.

23

are correct ways to check for missings or nonmissings. Note that SQLite allows
either NULL or null. In R

is.na(a)

will check whether a is NaN.
Especially careful readers will note that using NaN as a missingness marker is po-

tentially ambiguous: a NaN could represent truly missing data or it could represent the
result of dividing a nonmissing zero by another nonmissing zero. Thus, R has an NA
marker, which is distinct from its NaN marker. The authors of this document have sur-
veyed R users, including the authors of some popular packages, and have not found a
single user who takes care to preserve the distinction between NaN and NA in practice.
Note that NaNs are a subset of NAs, not the other way around:

> a<−NaN
> is.na(a)
[1] TRUE

> b<−NA
> is.nan(b)
[1] FALSE

Therefore, we recommend using the shorter is.na, which catches both NAs and
NaNs.

See also this blog post13 for bit-level discussion of the types of NaN.

8.2 Using m4 to reduce repetition

8.3 Citing Tea
To date, the only formal publication describing Tea is a UN proceedings paper [Kle-
mens, 2012], so until we get out more publications it is may be the best option when
citing Tea in an academic paper:

@inproceedings{klemens:tea,
author={Ben Klemens},
title= {Tea for Survey Processing},
booktitle={Proceedings of the Conference of European Statisticians},
chapter={Working paper 29},
crossref={UNECE12}

}

@proceedings{UNECE12,
title={Proceedings of the Conference of European Statisticians},
series={Work Session on Statistical Data Editing},

13http://modelingwithdata.org/arch/00000132.htm

24

organization={United Nations Economic Commission for Europe},
year=2012,
month=Sep

}

References
M Bankier, P Mason, and P Poirier. Imputation of demographic variables in the 2001

Canadian Census of Population. In American Statistical Association, Proceedings
of the Section on Survey Research Methods, 2002.

Bor-Chung Chen, Yves Thibaudeau, and William E Winkler. A comparison study of
ACS if-then-else, NIM, and DISCRETE edit and imputation systems. In ASA Joint
Statistical Meetings: Section on Survey Research Methods, 2002.

Arthur R Cresce, Jr, Sally M Obenski, and James Farber. Improving imputation: The
plan to examine count, status, vacancy, and item imputation in the Decennial Cen-
sus. In Proceedings of the Conference of European Statisticians, Work Session on
Statistical Data Editing. United Nations Economic Commission for Europe, May
2005.

IP Fellegi and D Holt. A systematic approach to automatic edit and imputation. Journal
of the American Statistical Association, 71:17–35, 1976.

María Garcia. Implied edit generation and error localization for ratio and balancing
edits. In Proceedings of the Conference of European Statisticians, Work Session on
Statistical Data Editing. United Nations Economic Commission for Europe, October
2003.

H O Hartley. Maximum likelihood estimation from incomplete data. Biometrics, 14
(2):174–194, June 1958.

Ben Klemens. Tea for survey processing. In Proceedings of the Conference of Euro-
pean Statisticians, Work Session on Statistical Data Editing. United Nations Eco-
nomic Commission for Europe, September 2012.

Mark Pierzchala. A review of the state of the art in automated data editing and impu-
tation. Journal of Official Statistics, 6(4):355–377, 1990.

J L Schafer. Analysis of Incomplete Multivariate Data. Number 72 in Monographs on
Statistics and Applied Probability. Chapman & Hall/CRC, 1997.

William E Winkler. Editing discrete data. In American Statistical Association, Pro-
ceedings of the Section on Survey Research Methods, pages 108–113, 1995.

25

